DOI QR코드

DOI QR Code

Local Winds Effects on the Water Surface Variation at the Shallow Estuary, Mobile Bay

해수순환모델(FVCOM)을 이용한 하구의 조위 변화에 미치는 국부적 바람의 영향

  • Lee, Jungwoo (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Yun, Sang-Leen (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Oh, Hye-Cheol (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Seog-Ku (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Jun (Korea Research Institute of Climate Change Countermeasure Strategies)
  • 이정우 (한국건설기술연구원 환경연구실) ;
  • 윤상린 (한국건설기술연구원 환경연구실) ;
  • 오혜철 (한국건설기술연구원 환경연구실) ;
  • 김석구 (한국건설기술연구원 환경연구실) ;
  • 이준 (한국기후변화대응전략연구소)
  • Received : 2014.07.31
  • Accepted : 2014.08.29
  • Published : 2014.08.31

Abstract

A three-dimensional ocean circulation model was applied to a shallow estuary, Mobile Bay, to study local wind setup and setdown. Tides started from the northern Gulf of Mexico propagates up to the Mobile River system which is located in the north of the Mobile Bay. However, the tides started in the south of Mobile Bay were distorted when travelling upstream while affected by river discharge and local winds. The water surface elevation was less/over predicted responding north/south winds, respectively, when winds only at the Dauphin Island station (DPI) were used. However, the model predicted water surface elevation better when using two local winds from DPI and Mobile Downtown Airport (MDA). Wind speeds were greatly reduced (~ 88%) in about 43 km distance between DPI and MDA, and the canopy effects may be the reason for this. For this reason, the local winds are greatly responsible for local surface elevation setup and setdown especially at the shallow estuary like Mobile Bay.

수심이 낮은 하구에서 바람이 국부적인 해수면 상승/하강에 미치는 영향을 연구하기 위해 Mobile Bay에 3차원 해수 순환모델을 적용하였다. Mobile Bay의 남단 경계면, 즉 northern Gulf of Mexico에서 시작된 조위는 Mobile River system 북부까지 직접적인 영향을 준다. 그러나 Mobile Bay 남단에서 발생한 조위변화는 Mobile Bay 북부로 이동하면서 Mobile River system으로부터 들어오는 담수와 국부적 바람의 영향으로 왜곡된다. Mobile Bay 남단에 위치한 기상관측소에서의 바람정보를 Mobile Bay 전체에 적용하였을 경우 Mobile Bay 북부에서 실제보다 강한 바람의 영향으로 과대한 수위 상승과 하강 현상이 발생하였다. 그러나 Mobile Bay 남단과 중단에 위치한 두 개의 관측소에서 측정된 바람 정보를 활용하였을 경우 Mobile Bay 북부에서의 조위 변화를 보다 정확하게 재현하는 것으로 나타났다. 특히 바람의 강도가 센 경우 Mobile Bay 남단과 북단의 풍속이 현저하게 차이나는 것으로 나타났으며(~ 88%), 이는 Mobile Bay 북단에서 나무와 건물 등의 영향으로 바람의 강도가 급격하게 줄어들었기 때문으로 판단된다. 따라서 Mobile Bay와 같이 수심이 낮고 국부적으로 풍속이 다른 하구 또는 만에서의 수위변화 재현 또는 예측을 위해서는 국부적인 바람 정보가 매우 중요한 것으로 연구되었다.

Keywords

References

  1. Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Lorenzo, E. D., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L., Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M., Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C. and Wilkin, J., "Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System," J. Comput. Phys., 227(7), 3595-3624(2008). https://doi.org/10.1016/j.jcp.2007.06.016
  2. Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A. M., Helber, R. and Arnone, R. A., "Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment," J. Mar. Syst., 76(1-2), 64-82(2009). https://doi.org/10.1016/j.jmarsys.2008.05.014
  3. Kim, T., Sheng, Y. P. and Park, K., "Modeling water quality and hypoxia dynamics in Upper Charlotte Harbor, Florida, U.S.A. during 2000," Estuarine, Coastal Shelf Sci., 90(4), 250-263(2010). https://doi.org/10.1016/j.ecss.2010.09.006
  4. Li, Z. and Weisberg, R. H., "West Florida continental shelf response to upwelling favorable wind forcing: 2. Dynamics," J. Geophys Res., 104(C10), 23427-23442(1999). https://doi.org/10.1029/1999JC900205
  5. Weisberg, R. H., Li, Z. and Muller-Karger, F., "West Florida shelf response to local wind forcing: April 1998," J. Geophys. Res., 106(C12), 31239-31262(2001). https://doi.org/10.1029/2000JC000529
  6. Weisberg, R. H., Liu, Y. and Mayer, D. A., "West Florida Shelf mean circulation observed with long-term moorings," Geophys. Res. Lett., 36(19), L19610(2009). https://doi.org/10.1029/2009GL040028
  7. Austin, J. A. and Lentz, S. J., "The Inner Shelf Response to Wind-Driven Upwelling and Downwelling," J. Phys. Oceanogr., 32(7), 2171-2193(2002). https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2
  8. Parker, B. B., "Sea Level As an Indicator of Climate and Global Change," Mar. Technol. Soc. J., 25(4), (1992).
  9. Walters, R. A., "Low-Frequency Variations in Sea Level and Currents in South San Francisco Bay," J. Phys. Oceanogr., 12(7), 658-668(1982). https://doi.org/10.1175/1520-0485(1982)012<0658:LFVISL>2.0.CO;2
  10. Huang, W., Jones, W. K. and Wu, T. S., "Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida, Estuarine," Coastal Shelf Sci., 55(1), 33-46(2002). https://doi.org/10.1006/ecss.2001.0881
  11. Guo, X. and Valle-Levinson, A., "Wind effects on the lateral structure of density-driven circulation in Chesapeake Bay," Continental Shelf Res., 28(17), 2450-2471(2008). https://doi.org/10.1016/j.csr.2008.06.008
  12. Kim, C.-K. and Park, K., "A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary," J. Mar. Syst., 96-97, 103-115(2012). https://doi.org/10.1016/j.jmarsys.2012.02.008
  13. Moller, O. O., Castaing, P., Salomon, J-C. and Lazure, P., "The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon," Estuaries, 24(2), 297-311(2001). https://doi.org/10.2307/1352953
  14. Cho, K-H., "A Numerical Modeling Study on Barotropic and Baroclinic Responses of the Chesapeake Bay to Hurricane Events," ProQuest, p. 276(2009).
  15. Stumpf, R. P., Gelfenbaum, G. and Pennock, J. R., "Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama," Cont. Shelf Res., 13(11), 1281-1301(1993). https://doi.org/10.1016/0278-4343(93)90053-Z
  16. Ryan, H., Noble, M., Williams, E., Schroeder, W., Pennock, J. and Gelfenbaum, G., "Tidal current shear in a broad, shallow, river-dominated estuary," Cont. Shelf Res., 17(6), 665-688(1997). https://doi.org/10.1016/S0278-4343(96)00053-2
  17. Dzwonkowski, B., Park, K., Ha, H. K., Graham, W. M., Hernandez, F. J. and Powers, S. P., "Hydrographic variability on a coastal shelf directly influenced by estuarine outflow," Continental Shelf Res., 31, 939-950(2011). https://doi.org/10.1016/j.csr.2011.03.001
  18. Lee, J., Webb, B. M., Dzwonkowski, B., Park, K. and Valle-Levinson, A., "Bathymetric influences on tidal currents at the entrance to a highly stratified, shallow estuary," Continental Shelf Res., 58, 1-11(2013). https://doi.org/10.1016/j.csr.2013.03.002
  19. Schroeder, W. W., "Riverine influence on estuaries: A case study," Estuarine Interactions, Academic Press, New York, pp. 347-364(1978).
  20. Park, K., Kim, C.-K. and Schroeder, W. W., "Temporal Variability in Summertime Bottom Hypoxia in Shallow Areas of Mobile Bay, Alabama," Estuaries Coasts, 30(1), 54-65 (2007). https://doi.org/10.1007/BF02782967
  21. Seim, H. E., Kjerfve, B. and Sneed, J. E., "Tides of Mississippi Sound and the Adjacent Continental Shelf," Estuar. Coast Shelf S., 25, 143-156(1987). https://doi.org/10.1016/0272-7714(87)90118-1
  22. Schroeder, W. W., Dinnel, S. P. and Wiseman, W. J., "Salinity stratification in a river-dominated estuary," Estuar. Coast, 13(2), 145-154(1990). https://doi.org/10.2307/1351583
  23. Chen, C., Liu, H. and Beardsley, R. C., "An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries," J. Atmos. Oceanic Technol., 20, 159-186(2003). https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
  24. Fischer, H. B., "Mass transport mechanisms in partially stratified estuaries," J. Fluid Mechanics, 53(4), 671-687(1972). https://doi.org/10.1017/S0022112072000412
  25. Kim, T. Y. and Yoon, H. S., "Skill Assessments for Evaluating the Performance of the Hydrodynamic Model," J. Kor. Soc. Mar. Environ. Eng., 14(2), 107-113(2011). https://doi.org/10.7846/JKOSMEE.2011.14.2.107
  26. Willmott, C. J., "Some Comments on the Evaluation of Model Performance," Bullet. Am. Meteor. Soc., 63(11), 1309-1313(1982). https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2