DOI QR코드

DOI QR Code

Modeling the effect of nutrient enrichment on the plankton population: Validation using mesocosm experiment data

영양염 증가에 따른 부유생태계 반응 모의: FVCOM을 이용한 중형폐쇄생태계(Mesocosm) 자료 재현

  • Received : 2011.08.25
  • Accepted : 2011.10.13
  • Published : 2011.10.31

Abstract

Responses of plankton populations to nutrient enrichment in mesocosm experiments in Shihwa lake were simulated using FVCOM. Dissoloved oxygen module was added to the FVCOM to simulate impacts of its decreased levels. The ecological model included the major components of the pelagic ecosystem including nutrients, phytoplankton (pico-, nano-, micro-), zooplankton (two groups of protozoa, mesozooplankton), particulate organic matter, dissolved organic matter and bacteria, and was calibrated using trophodynamic data collected from Gyeonggi Bay and Shihwa Lake. The model was able to reproduce major responses of plankton populations to nutrient enrichment, including phytoplankton of different size groups, change of dominance of protozoa from < 20 ${\mu}m$ oligotrichs to scuticociliates, and reponses to bacteria and low levels of dissolved oxygen in water column of the mesocosms.

FVCOM을 이용하여 시화호의 부영양화 메소코즘 내 부유생태계 변화 현장실험 결과를 재현하였다. 용존산소는 부영양화된 연안의 지화학생태 반응 결정에 중요한 역할을 하는 요소이나 FVCOM에서는 이를 모의하지 않아 용존산소 모듈을 추가하였으며, 그 적용성을 확인하였다. 수질생태 관련 상태변수를 영양염, 식물플랑크톤(극미소, 미소, 소형), 동물플랑크톤(원생동물 2군, 중형동물플랑크톤), 쇄설성 유기물, 용존성 유기물, 박테리아 그룹으로 설정하고 경기만과 시화호에서 측정된 생물군 간 먹이 상관관계 자료를 기반으로 모델을 구성하였다. 영양염 증가에 따른 메소코즘 내 크기별 식물플랑크톤의 변화 특성과 실험 초기에 나타나는 < 20 ${\mu}m$ 빈섬모충류 우점에서 scuticociliates로의 원생동물 천이 양상 등을 재현할 수 있었으며, 박테리아와 저산소의 영향을 파악하였다.

Keywords

References

  1. 김웅서 (2001). 해양생태계 연구를 위한 폐쇄생태계의 활용. 한국환경생물학회지, 19(3), 183-194.
  2. 김종구, 김양수 (2002). 새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용. I. 해역의 수질 특성 및 저질의 용출 부하량 산정. 한국수산학회지, 35(4), 348-355.
  3. 김종구, 김준우, 조은일 (2002). 시화호 배수갑문 운용에 따른 수질변화. 한국환경과학회지, 11(12), 1205-1215.
  4. 김형철, 최우정, 이원찬, 구준호, 이필용, 박성은, 홍석진, 장주형 (2007). 수질관리를 위한 시화호의 환경용량 산정. 한국환경과학회지, 16(5), 571-581.
  5. 백승호, 유카이, 박범수, 한명수 (2010). 시화호 주변 부영양화 기 수유역의 미소생물 군집의 계절적 변화. 한국하천호수학회지, 43(1), 55-68.
  6. 송규민, 이상룡, 이석, 안유환 (2007). 생태계모델을 이용한 황해투기해역에서의 춘계 식물플랑크톤 대증식 연구. Ocean Polar Res., 29(3), 217-231. https://doi.org/10.4217/OPR.2007.29.3.217
  7. 신재기, 김동섭, 조경제 (2000). 시화호에서 무기영양염과 식물 플랑크톤 동태. Kor. J. Limnol., 33(2), 109-118.
  8. 양은진 (2001). 인천 연안 미소형 및 소형 동물플랑크톤의 생태학적 연구. 박사학위 논문, 인하대학교. 286p.
  9. 양은진, 최중기 (2003). 경기만 수역에서 미세생물 군집의 계절적 변동 연구, II. 미소형 및 소형 동물플랑크톤. 한국해양학회지 바다, 8, 78-93.
  10. 양은진, 최중기 (2007). 인천 연안의 초가을 식물플랑크톤 대증식기에 식물플랑크톤과 종속영양 원생동물 군집의 단주기 변동. Ocean Polar Res., 29(2), 101-112. https://doi.org/10.4217/OPR.2007.29.2.101
  11. 양은진, 최중기, 현정호 (2003). 경기만 수역에서 미세생물 군집의 계절적 변동 연구, I. 박테리아와 종속영양 미소 편모류. 한국해양학회지 바다, 8, 44-57.
  12. 유정규, 명철수, 최중기, 홍현표, 김은수 (2010). 시화호 중형동물플랑크톤 군집의 시공간적 변동. Ocean Polar Res., 32(3), 187-201. https://doi.org/10.4217/OPR.2010.32.3.187
  13. 이인철, 윤석진, 김현주 (2008). 생태계모델을 이용한 동해 심층수개발해역의 수질환경 변화예측. 한국해양공학회지, 22(2), 34-41.
  14. 인하대학교 서해연안환경연구센터 (2002). 서해연안환경연구센터 연구보고서. 426p.
  15. 해양수산부 (2005). 시화호 해양환경개선 사업. 617p.
  16. 해양수산부 (2006). 시화호 해양환경개선 연구용역. 755p.
  17. 해양수산부 (2007). 시화호 해양환경개선 사업. 686p.
  18. 최중기, 이은희, 노재훈, 허성회 (1997). 시화호와 주변해역 식물플랑크톤의 대증식과 일차생산력에 관한 연구. 한국해양학회지 바다, 2(2), 78-86.
  19. Ayo, B., Santamaria, E., Latatu, A., Artolozaga, I., Azua, I. and Iriberri, J. (2001). Grazing rates of diverse morphotypes of bacterivorous ciliates feeding on four allochthonous bacteria. Lett. Appl. Microbiol., 33(6), 455-460. https://doi.org/10.1046/j.1472-765X.2001.01034.x
  20. Banks, R.B. and Herrera, F.F. (1977). Effect of wind and rain on surface reaeration. J. Environ. Eng. Div., ASCE, 103(EE3), 489-504.
  21. Beaver, J.R. and Crisman, T.L. (1982). The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr., 27(2), 246-253. https://doi.org/10.4319/lo.1982.27.2.0246
  22. Bierman, V.J. Jr. and Dolan, D.M. (1981). Modeling of phytoplankton- nutrient dynamics in Saginaw Bay, Lake Huron. J. Great Lakes Res., 7(4), 409-439. https://doi.org/10.1016/S0380-1330(81)72069-0
  23. Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.M and Gherini, S.A. (1985). Rates, constants and kinetics formulations in surface water quality modeling (second edition). EPA/600/3-85/040, 455p.
  24. Cerco, C.F. and Cole, T.M. (1993). Three-dimensional eutrophication model of Chesapeake Bay. J. Environ. Eng., 119(6), 1006-1025. https://doi.org/10.1061/(ASCE)0733-9372(1993)119:6(1006)
  25. Cerco, C.F. and Cole, T.M. (1994). Three-dimensional eutrophication model of Chesapeake Bay. Technical Report EL-94-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
  26. Chen, C.W. (1970). Concepts and utilities of ecological models. Proc. Am. Soc. Civ. Eng. J. San. Eng. Div., 96(SA5), 1085-1097.
  27. Chen, C., Beardsley, R.C. and Cowles, G. (2006). An unstructured grid, finite-volume coastal ocean model: FVCOM User Manual, Second Edition. SMAST/UMASSD, Technical Report-06-0620, 315p.
  28. Choi, J.K. (2010). The grazing pressure of dominant copepods on phytoplankton and microbial food web in Gyeonggi Bay, the Yellow Sea. Proc. 2nd Yellow Sea Regional Science Conference. Xiamen, China, 24-26 Feb. 2010.
  29. Choi, J.K. and Shim, J.H. (1986) The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. III. Phytoplankton composition, standing crops. tychopelagic plankton. J. Oceanogr. Soc. Korea, 21, 156-170.
  30. Dolan, J.R. and Coats, D.W. (1991). Changes in fine scale vertical distributions of ciliate microzooplankton related to anoxia in Chesapeake Bay waters. Mar. Microb. Food Webs, 5(1), 81-93.
  31. Galperin, B., Kantha, L.H., Hassid, S. and Rosati A. (1988). A quasiequilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 55-62. https://doi.org/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
  32. Gaudy, R., Pagano, M., Cervetto, G., SaintJean, L., Verriopoulos, G. and Beker, B. (1996). Short term variations in feeding and metabolism of Acartia tonsa (pelagic copepod) in the Berre lagoon (France). Oceanol. Acta., 19, 635-644.
  33. Gretchen, C., Bollens, R. and Penry, D.L. (2003). Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Mar. Ecol. Prog. Ser., 257, 139-158. https://doi.org/10.3354/meps257139
  34. Hamilton, R.D. and Preslan, J.E. (1970). Observations on the continuous culture of a planktonic phagotrophic protozoan. J. Exp. Mar. Biol. and Ecol., 5(1), 94-104. https://doi.org/10.1016/0022-0981(70)90032-8
  35. Hansen, B., Bjornsen, P.K. and Hansen, P.J. (1994). The size ratio between planktonic predators and their prey. Limnol. Oceanogr., 39, 395-403. https://doi.org/10.4319/lo.1994.39.2.0395
  36. Hydroscience Inc. (1971). Simplified mathematical modeling of water quality, prepared for the Mitre Corporation and the USEPA, Water programs, Washington D.C., 127p.
  37. Jorgensen, S.E. (2009). Ecological Modeling. An Introduction. WIT Press, Southampton, Boston. 188p.
  38. Kim, T., Sheng, Y.P. and Park, K. (2010). Modelling water quality and hypoxia dynamics in upper Charlotte Harbor, Florida, U.S.A. during 2000. Estuar. Coast Shelf Sci., 90(4), 250-263. https://doi.org/10.1016/j.ecss.2010.09.006
  39. Lee, S.H. and Fuhrman, J.A. (1987). Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53(6), 1298-1303.
  40. Li, J., Sun S., Li, C., Zhang, Z. and Pu, X. (2008). Effects of different diets on the reproduction and naupliar development of the copepod Acartia bifilosa. J. Exp. Mar. Biol. Ecol. 355(2), 95-102. https://doi.org/10.1016/j.jembe.2007.12.005
  41. Mellor, G.L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Phys., 20(4), 851-875. https://doi.org/10.1029/RG020i004p00851
  42. Oviatt, C.A. (1994). Biological considerations in marine enclosure experiments: challenges and revelations. Oceanography, Wash., 7(2), 45-51. https://doi.org/10.5670/oceanog.1994.02
  43. Park, K, Kuo, A.Y., Shen, J. and Hamrick, J.M. (1995). A threedimensional Hydrodynamic-Eutrophication Model (HEM-3D): Description of water quality and sediment process submodels. Special Report in Applied Marine Science and Ocean Engineering, No. 327., Virginia Institute of Marine Science, College of William and Mary.
  44. Putt, M. and Stoecker D.K. (1989). An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Limnol. Oceanogr., 34(6), 1097-1103. https://doi.org/10.4319/lo.1989.34.6.1097
  45. Seo, J.H. and Choi, J.K. (2008). In situ grazing pressure of Acartia hongi female (Copepoda: Calanoida) on phytoplankton in Gyeonggi Bay, Korea. The Yellow Sea, 9(1), 32-39.
  46. Shen, J. (2006). Optimal estimation of parameters for a estuarine eutrophication model. Ecological Modelling., 191, 521-537. https://doi.org/10.1016/j.ecolmodel.2005.05.020
  47. Sherr, E.B., Sherr, B.F., Fallon, R.D. and Newell. S.Y. (1986). Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr., 31(1), 177-183. https://doi.org/10.4319/lo.1986.31.1.0177
  48. Sherr, E.B. and Sherr, B.F. (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28(2), 223-235. https://doi.org/10.1007/BF00166812
  49. Thomann, R.V and Mueller, J.A. (1987). Principles of surface water quality modeling and control. Harper & Row, New York.
  50. Turley, C.M., Newel,l R.C. and Robins D.B. (1986). Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser., 33, 59-70. https://doi.org/10.3354/meps033059
  51. Urrutxurtu, I., Orive, E. and Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci., 57(5-6), 1169-1182. https://doi.org/10.1016/S0272-7714(03)00057-X
  52. Yang, E.J., Choi, J.K. and Hyun, J.H. (2008). Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci., 77(3), 320-330. https://doi.org/10.1016/j.ecss.2007.09.034
  53. Yang, E.J., Ju, S.J. and Choi, J.K. (2010). Feeding activity of the copepod Acartia hongi on phytoplankton and micro-zooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci., 88(2), 292-301. https://doi.org/10.1016/j.ecss.2010.04.005

Cited by

  1. Effects of Temperature and Irradiance on Growth Rate of Skeletonema marinoi-dohrnii Complex Isolated from Gyeonggi Bay, Korea vol.32, pp.2, 2014, https://doi.org/10.11626/KJEB.2014.32.2.118