• Title/Summary/Keyword: FUNWAVE

Search Result 22, Processing Time 0.028 seconds

Wave Transformation using Modified FUNWAVE-TVD Numerical Model (수정 FUNWAVE-TVD 수치모형을 이용한 파랑변형)

  • Choi, Young-Kwang;Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.406-418
    • /
    • 2015
  • The present modified FUNWAVE-TVD model, which is a modification to its previous version 2.1, is applied to solitary wave propagation and is tested against the experiments of Vincent and Briggs(1989) and Luth et al.(1994). The eddy viscosity breaking scheme is used for comparison with the existing study in the case of breaking experiment. The symmetry of wave-induced current is maintained when the modified model is employed to Vincent and Briggs(1989) breaking experiment, but the symmetry of wave-induced current in previous model is not maintained. A better agreement with the breaking experimental data is obtained in the modified model using eddy viscosity breaking scheme than the shock capturing breaking scheme using nonlinear shallow water equation. For comparison with the schemes in the model, the fourth order MUSCL-TVD scheme by Erduran et al.(2005) and the third order MUSCL-TVD scheme using minmod limiter is applied, and the numerical solutions of solitary wave are compared.

A Study on Amplification and Deformation of Long-Period Waves (해양장파의 증폭과 변형에 대한 연구)

  • Bae, Jae-Seok;Shin, Choong-Hun;Cho, Young-Joon;Yoon, Sung-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.45-49
    • /
    • 2011
  • 본 연구에서는 일본 전력중앙연구소에서 수행된 wave fission 수리모형실험 자료를 토대로 일차원 FUNWAVE 수치모형을 이용하여 wave fission 현상을 재현하는 수치모의를 수행하였다. FUNWAVE 수치모형은 Boussinesq 방정식을 지배방정식으로 사용하고 있으며 파의 분산효과와 비선형 효과를 고려할 수 있는 수치모형이다. 따라서 wave fission의 주된 발생원인인 분산효과와 비선형효과에 대한 고려를 통해 수치모의 결과는 수리모형실험의 관측치와 상당히 잘 일치함을 확인할 수 있었다. 또한, 본 연구에서는 추가적으로 해수의 흐름이 존재하는 경우를 가정하고 수로 내 일정한 유량의 흐름을 추가하여 wave fission 일차원 수치모의를 수행하였다. 수치모의 결과 파의 진행방향과 반대방향으로 흐름이 존재하는 경우 wave fission으로 인한 수면변위의 크기가 상대적으로 증가함을 확인할 수 있었으며 반대로 파의 진행방향과 동일한 방향으로 흐름이 존재하는 경우 wave fission으로 인한 수면변위의 크기가 상대적으로 감소함을 확인할 수 있었다.

  • PDF

Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model (FUNWAVE-TVD 수치모형을 이용한 수중천퇴를 통과하는 불규칙파의 수치모의에서 TVD 기법들에 의한 수치해 비교)

  • Choi, Young-Kwang;Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.143-152
    • /
    • 2018
  • Numerical convergence and stability of TVD schemes have been applied in the FUNWAVE-TVD model were compared. The fourth order accurate MUSCL-TVD scheme using minmod limiter suggested by Yamamoto and Daiguji (1993), the fourth order accurate MUSCL-TVD scheme using van-Leer limiter suggested by Erduran et al. (2005) and the second order accurate MUSCL-TVD scheme using van-Leer limiter in Zhou et al. (2001) were compared. Comparisons of the numerical scheme were conducted with experimental data of Vincent and Briggs irregular wave experiments. In comparison with the fourth order accurate scheme using van-Leer limiter, the fourth order accurate scheme using minmod limiter is less dissipative but required lower CFL condition for stable numerical solution. On the other hand, the scheme using van-Leer limiter required smaller resolution spatial grid due to numerical dissipation, but relatively higher CFL condition can be used compared to the scheme using minmod limiter. In the breaking wave experiments which were conducted using high resolution spatial grid to reduce numerical dissipation, the characteristic of the schemes can be clearly observed. Numerical instabilities and blow-up of the numerical solutions were found in the irregular wave breaking simulation with the scheme using minmod limiter. However, the simulation can be completed with the scheme using van-Leer limiter, but required low CFL condition. Good agreements with the observed data were also observed in the results using van-Leer limiter.

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

Numerical study for classifying generation types of rip currents at the beaches of the East Sea coast (수치모의를 통한 동해안 해수욕장의 이안류 발생 형태 분류 연구)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.645-655
    • /
    • 2022
  • Recently rip currents are frequently observed in the summer at the beaches located along the East Sea coast. To understand the generation types of rip currents occurred at the Ease Sea beaches, numerical simulations of rip currents over the topographies of the Sokcho, Naksan, Gyeongpo, Mangsang beaches were performed by using a Boussinesq-type wave and current model, FUNWAVE. The offshore and nearshore topographically-controlled rip currents and the transient rip currents were well reproduced due to the alongshore non-uniformities involving the phase interaction effects. This study looked over the generation types of rip currents to occur at the beaches with complicated field bathymetries.

A Numerical Study of Rip Current Generation Modulated with Tidal Elevations at the Daecheon Beach (큰 조차에 따라 변화하는 지형의 대천 해수욕장 이안류 발생 특성 수치모의 연구)

  • Junwoo, Choi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.247-257
    • /
    • 2022
  • In order to investigate the generations of rip currents modulated with the tidal elevations at a mega-tidal beach at the West Sea coast, numerical simulations of rip currents over the topography of the Daecheon beach were performed by using a Boussinesq-type wave and current model, FUNWAVE. The mega-tidal coast includes rocky outcrops (i.e., reefs) lying over or under the water surface according to the tidal elevations in the offshore and nearshore bathymetry. The offshore topographically-controlled rip currents were well reproduced due to the alongshore non-uniformities transformed by the tide-modulated topography. This study addressed the generation types of rip currents to occur at the mega-tidal coast with the tide-modulated outcrops and reefs.

Application of rip current likelihood distributions on rip current forecast system (이안류 예보를 위한 이안류 발생정도 분포 함수의 적용)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.521-528
    • /
    • 2023
  • An approach for producing a rip current risk index using the rip current likelihood distribution obtained through the FUNWAVE simulations was applied to a rip current forecast system. The approach originally developed for an observation-based real-time rip current warning system was utilized with wave forecast data instead of observations for the rip current forecast system. The availability of the present approach was checked by comparing the observation-based rip current risk index and the wave forecast-based rip current risk index of the Haeundae Beach in 2021.

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Yoon, Sung-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.570-576
    • /
    • 2007
  • 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent와 Briggs (1989)의 실험조건을 수치모의하여 파랑과 흐름의 상호작용 효과를 연구하였다. SHORECIRC 흐름모형을 결합한 파랑모형 REF/DIF 1과 SWAN, 그리고 파랑과 흐름을 동시에 수치모의 할 수 있는 FUNWAVE를 이용하여 수중천퇴상을 통과하며 변형하고 또 다시 수중천퇴상에서 발생한 쇄파에 의해 발생된 쇄파류에 의해 변형하는 규칙파를 수치모의하였다. 수중천퇴상에서 쇄파가 발생할 때 잉여파응력의 급격한 변화에 따른 강한 유사제트류가 발생하고, 이 흐름은 수중천퇴후면의 파집중현상을 방해하여 파랑을 천퇴중심축으로부터 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 한다. 이러한 역학은 실험결과와 본 연구의 수치모의를 통해 확인할 수 있었고, 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다. 규칙파 모의에 한계가 있는 SWAN과 규칙파 특성상 강하게 나타나는 중복파의 잉여파응력계산에 한계가 있는 REF/DIF 1과 달리 FUNWAVE를 이용한 수치모의는 실험결과와 완벽히 일치하였으며, 수중천퇴 후면에 발생하는 쇄파류와 쇄파류에 의한 쌍 vortex의 발달과정을 잘 보여 주었다.

  • PDF