• Title/Summary/Keyword: FSR sensor

Search Result 58, Processing Time 0.028 seconds

Sensitivity Analysis for Specifications of Silicon-on-Insulator (SOI) Slot Optical Waveguide-based Single and Add-drop Channel Ring-resonant Biochemical Integrated Optical Sensors (SOI 슬롯 광 도파로 기반 단일 및 삽입-분기 채널 링-공진형 바이오·케미컬 집적광학 센서의 제원에 대한 감도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • The effects of ring radius and coupling spacing on the free spectral range (FSR), full width at half maximum (FWHM), quality factor, and sensitivity of single-channel and add-drop channel slot ring resonators were systematically investigated using FIMMPROP and PICWAVE numerical software. The single-channel ring resonator exhibited better characteristics, namely, a wider FSR and narrower FWHM compared with the add-drop structure; thus, it was evaluated to be more suitable for biochemical sensors. The FSR, FWHM, quality factor, and sensitivity for a single channel ring resonator with a radius of 59.4 ㎛ and coupling gap of 0.5 ㎛ were 2.4 nm, 0.087 nm, 17677, and 550 [nm/RIU], respectively.

Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor (저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가)

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.

Center of Pressure of a Human Body using Force Sensing Resistor (Force Sensing Resistor를 이용한 인체압력중심 변화 분석)

  • Park, Cheol;Park, Shinsuk;Kim, Choong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1722-1725
    • /
    • 2014
  • An experimental investigation of COP(center of pressure) was performed using FSR(force sensing resistor) and force plate. The FSR sensor system is used as effective device to detect the movement of human body in activities of daily living. It has been shown that the FSR provides the trajectories of COP with repeatability and reliability.

The Development and Verification of Balance Insole for Improving the Muscle Imbalance of Left and Right Leg Using based Sound Feedback (청각 피드백이 적용된 좌우 불균형 개선을 위한 밸런스 인솔 개발 및 검증)

  • Kang, Seung-Rok;Yoon, Young-Hwan;Yu, Chang-Ho;Nah, Jae-Wook;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This study was to develop the balance insole system for detecting and improving the muscle imbalance of left and right side in lower limbs. We were to verify the validation of balance insole system by analyzing the strategy of muscular activities and foot pressure according to sound feedback. We developed the balance insole based FSR sensor modules for estimating the muscle imbalance using detecting foot pressure. The insole system was FPCB have 8-spot FSR sensor with sensitivity range of 64-level. The participants were twenty peoples who have muscle strength differences in left and right legs over 20%. We measured the muscular activity and foot pressure of left and right side of lower limbs in various gait environment for verifying the improvement effect of muscle imbalance according to sound feedback. They performed gait in slope at 0, 5, 10, 15% and velocity at 3, 4, 5km/h. The result showed that the level of muscle imbalance reduced within 30% for sound feedback of balance insole system contrast to high level of muscle imbalance at 169.9~246.8% during normal gait for increasing slope and velocity. This study found the validation of balance insole system with sound feedback stimulus. Also, we thought that it is necessary to research on the sensitivity of foot area, detection of muscle imbalance and processing algorithm of correction threshold spot.

Walking Intention Detection using Fusion of FSR and Tilt Sensor Signals (저항 센서와 기울기 센서의 융합에 의한 보행 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Lee, Jae-Yeon;Chi, Su-Young;Kang, Sang-Seung;Cho, Young-Jo
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.441-448
    • /
    • 2010
  • In the aging society, the walking assist robot is a necessary device for being able to help the older and the lower limb disabled people to walk. In order to produce a convenient robot for the older and the lower limb disabled, it is needed for the research to detect the implicit walking intention and to control robot by a user's intention. This study is a previous study to develop the detection model of the walking intention and analyze the user's walking intention while a person is walking with Lofstrand crutches, by the combination of FSR and tilt signals. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We can recognize the user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

  • PDF

Design of Action Monitoring System Using Arduino Sensors and LEDs (아두이노 센서와 LED를 활용한 움직임 모니터링 시스템 설계)

  • Park, Kyeongseok;Hwang, Soyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.81-83
    • /
    • 2017
  • 우리 삶의 다양한 분야에서 ICT 기술을 적용하여 편의성과 활용성이 증대되고 있다. 본 논문에서는 최근 다양한 응용에 활용되고 있는 아두이노(Arduino)를 기반으로 사람의 움직임에 따라 이용할 수 있는 Accelerometer와 FSR 센서를 사용하여 RGB LED Strip을 제어하고 여러가지 색상을 다양한 패턴으로 나타나게 하며, 해당 움직임을 모니터링할 수 있는 시스템을 제안한다. 이는 사람의 움직임 또는 동작을 취하는 다양한 신체부위에 적용해 볼 수 있다.

  • PDF

Highly Sensitive Optical-fiber Humidity Sensor Based on Nafion-PVA Sol-gel

  • Ning, Wang;Yuhao, Li;Xiaolei, Yin;Wenting, Liu;Shiqi, Liu; Xuwei, Zhao; Yanxi, Zhong;Liang, Xu
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • A highly sensitive optical-fiber humidity sensor is demonstrated in this paper. By using Nafion-PVA sol-gel and single-mode optical fibers, the Fabry-Perot humidity sensor is easily fabricated. In the humidity range of 29%-72%, humidity-response experiments are carried out with a cycle of rising and falling humidity to investigate humidity-response characteristics. The experimental results show 2.25 nm/%RH sensitivity and a 0.9997 linear correlation coefficient, with good consistency. The changes in optical-path difference (OPD) and free spectral range (FSR) with humidity are also discussed. The humidity sensitivities of a typical sensor are 80.3 nm/%RH (OPD) and 0.03 nm/%RH (FSR). Furthermore, many humidity sensors with different Nafion-PVA sol-gel concentration and initial cavity length are experimentally investigated for humidity response. The results show that the sensitivity increases with higher Nafion ratio of the Nafion-PVA sol-gel. The influence of changing cavity length on sensitivity is not obvious. These results are helpful to research on optical-fiber humidity sensors with good performance, easy fabrication, and low cost.

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

Development of Force/Moment Sensor using Force Sensing Resistor (Force Sensing Resistor를 이용한 힘/모멘트 센서 개발)

  • Choi, Myoung-Hwan;Lee, Woo-Won
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.89-96
    • /
    • 2001
  • A low cost force./moment sensor that can be used in the robot teaching task is presented. Force Sensing Resistor is used as the transducer. The principle of force/moment detection is explained, the architecture of the sensor is shown, and the measurement of the force/moment is presented. The force/moment sensor shown in this work is not meant to be used in a precise force/moment control, but it is intended to be used in the robot teaching where low accuracy can be tolerated.

  • PDF