• Title/Summary/Keyword: FSI analysis

Search Result 273, Processing Time 0.026 seconds

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

Dynamic behavior of intake tower considering hydrodynamic damping effect

  • Uddin, Md Ikram;Nahar, Tahmina Tasnim;Kim, Dookie;Kim, Kee-Dong
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.355-367
    • /
    • 2022
  • The effect of hydrodynamic damping on intake tower is twofold: one is fluid damping and another is structural damping. Fluid damping can be derived analytically from the governing equation of the fluid-structure-interaction (FSI) problem which yields a very complicated solution. To avoid the complexity of the FSI problem water-tower system can be simplified by considering water as added mass. However, in such a system a reconsideration of structural damping is required. This study investigates the effects of this damping on the dynamic response of the intake tower, where, apart from the "no water (NW)" condition, six other cases have been adopted depending on water height. Two different cross-sections of the tower are considered and also two different damping properties have been used for each case as well. Dynamic analysis has been carried out using horizontal ground motion as input. Finally, the result shows how hydrodynamic damping affects the dynamic behavior of an intake tower with the change of water height and cross-section. This research will help a designer to consider more conservative damping properties of intake tower which might vary depending on the shape of the tower and height of water.

A Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Hydraulic Oil Conditions (오일부 운전조건 변화에 따른 수소용 다이어프램 압축기의 성능예측에 대한 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.471-478
    • /
    • 2009
  • The specific some types of compressors are appropriate for a use in hydrogen gas station. Metal diaphragm type of hydrogen compressor is one of them, which can satisfy the critical requirements of maintaining gas purity and producing high pressure over 850 bar. The objective of this study is to investigate an characteristics of compression through two-way Fluid-Structure-Interaction (FSI) analysis as bulk modulus and initial volume of oil independently varies. Deflection of diaphragm, oil density, gas and oil pressure were analyzed during a certain period of compression process. According to the analysis results, bulk modulus and initial volume remarkably affected deflection of diaphragm, oil density, gas and oil pressure. The highest gas pressure were attained with the highest bulk modulus of $7e^9\;N/m^2$ and the lowest initial oil volume of 80 cc.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

Numerical Analysis on a Hydrogen Diaphragm Compressor with Various Oil Distribution Holes Pattern for Hydrogen Compressor (수소용 다이어프램 압축기의 오일 분배 홀 패턴에 따른 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.87-94
    • /
    • 2009
  • There are several types of compressors which are appropriate for hydrogen gas station. Diaphragm type of compressor is the one of them and it satisfies the requirements for that purpose in terms of maintaining gas purity and making high pressure over 700 bar. The objective of this study is to find an optimal design of oil distribution hole configuration. The number of holes is changed maintaining total cross-sectional area of holes. Five cases(1 hole, 4, 8,16 and 24 holes) were studied through Fluid Structure Interaction(FSI) analysis method. Gas and oil pressure, the deflection and stress of the diaphragm were analysed during compression and suction process respectively. There is no specific difference among the cases during compression. An additional deflection due to the existence of hole was found during suction for all case. But the highest deflection and stress were found in the 1 hole case. It was seen that 60% decrease of stress in magnitude in 24 hole case compare to the 1 hole case.

Fluid-Structure Interaction Analysis for Open Water Performance of 100 kW Horizontal Tidal Stream Turbine (유체-구조 연성을 고려한 100 kW급 수평축 조류발전 터빈의 단독성능 해석)

  • Park, Se Wan;Park, Sunho;Rhee, Shin Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • It is essential to consider the effect of blade deformation in order to design a better tidal stream turbine being operated in off-design condition. Flow load causes deformation on the blade, and the deformation affects the turbine performance. In the present study, CFD analysis procedures were developed to predict open water performance of horizontal axis tidal stream turbine (HATST). The developed procedures were verified by comparing the results with existing experimental results. Fluid-structure interaction (FSI) analysis method, based on the verified CFD procedure, have been carried out to estimate the turbine performance for a turbine with flexible composite blades, and then the results were compared with those for rigid blades.

The Study of Aerodynamic about High-speed projectiles using Fluid Structure Interaction analysis (유체 구조 연성 해석기법을 이용한 고속발사체에 미치는 공력의 수치해석적 연구)

  • Kang, Mingyu;Park, Dongjin;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2012
  • This paper is focusing on the define the safety of high speed projectiles from aerodynamic load. The Fin loaded from aerodynamic is the roll of high speed projectile's gide. The Fin can rotate about 25deg as maximum, and it has maximum aerodynamic load with 25deg position. For finite element analysis from aerodynamic load, fluid analysis will be conducted before structure analysis and export pressure data. The pressure data will be used as load condition at structure analysis of Fin. The result of structure analysis of Fin, there is some stress concentration and stress closed with yield stress of material. But this problem will be solved with change to another material.