DOI QR코드

DOI QR Code

Fluid-Structure Interaction Analysis for Open Water Performance of 100 kW Horizontal Tidal Stream Turbine

유체-구조 연성을 고려한 100 kW급 수평축 조류발전 터빈의 단독성능 해석

  • Park, Se Wan (Korea Institute of Ocean Science & Technology) ;
  • Park, Sunho (Department Ocean Engineering, Korea Maritime and Ocean University) ;
  • Rhee, Shin Hyung (Department of Naval Architecture and Ocean Engineering, Research Institute of Marine Systems Engineering, Seoul National University)
  • 박세완 (한국해양과학기술원) ;
  • 박선호 (한국해양대학교 해양공학과) ;
  • 이신형 (서울대학교 조선해양공학과 해양시스템공학연구소)
  • Received : 2013.11.27
  • Accepted : 2014.02.17
  • Published : 2014.02.25

Abstract

It is essential to consider the effect of blade deformation in order to design a better tidal stream turbine being operated in off-design condition. Flow load causes deformation on the blade, and the deformation affects the turbine performance. In the present study, CFD analysis procedures were developed to predict open water performance of horizontal axis tidal stream turbine (HATST). The developed procedures were verified by comparing the results with existing experimental results. Fluid-structure interaction (FSI) analysis method, based on the verified CFD procedure, have been carried out to estimate the turbine performance for a turbine with flexible composite blades, and then the results were compared with those for rigid blades.

조류발전 터빈의 효과적인 설계를 위해서는 날개의 변형을 고려한 해석이 필요하다. 날개에 가해지는 유체 하중은 날개 구조를 변형시키고, 터빈의 성능에 영향을 초래한다. 본 연구에서는 수평축 조류발전 터빈의 단독성능을 해석하는 전산유체역학 해석 절차를 개발하였다. 개발한 절차를 이용하여 조류발전 터빈의 성능을 예측하였고 실험결과와 비교하여 검증하였다. 검증된 전산유체역학 방법을 이용하여 복합재 터빈 날개에 대한 유체-구조 연성해석을 수행하였고 강체로 이루어진 터빈 날개에 대한 전산유체역학 해석 결과와 비교하였다.

Keywords

References

  1. Bahaj, A.S. Molland, A.F. Chaplin, J.R. Batten, W.M.J., 2007, "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank", Renewable Energy, Vol. 32, pp. 407-426. https://doi.org/10.1016/j.renene.2006.01.012
  2. Batten, W.M.J. Bahaj, A.S. Molland, A.F. Chaplin, J.R., 2007, "Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines", Ocean Engineering, Vol. 34, pp. 1013-1020. https://doi.org/10.1016/j.oceaneng.2006.04.008
  3. Bazilevs, Y. Hsu, M.-C. Akkerman, I. Wright, S. Takizawa, K. Henicke, B. Spielman, T. Tezduyar, T.E., 2011a, "3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics," Numerical Methods in Fluids, Vol. 65, pp. 207-235. https://doi.org/10.1002/fld.2400
  4. Bazilevs, Y. Hsu, M.-C. Kiendl, J. Wuchner, R. Bletzinger, K.-U., 2011b, "3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades", Numerical Methods in Fluids, Vol. 65, pp. 236-253. https://doi.org/10.1002/fld.2454
  5. Celik, I.B. Ghia., U. Roache., P.J. Freitas, C.J., 2008, "Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications", Journal of Fluids Engineering, Vol. 130, No. 7, p. 078001. https://doi.org/10.1115/1.2960953
  6. Daniel, I.M. Ishai, O., 1994, Engineering Mechanics of Composite Materials, OXFORD UNIVERSITY PRESS.
  7. Harrison, M.E. Batten, W.M.J. Myers, L.E. Bahaj, A.S., 2010, "A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines", IET Renewable Power Generation, Vol. 4, No. 6, pp. 613-617. https://doi.org/10.1049/iet-rpg.2009.0193
  8. Khan, M.J., Bhuyan, G. Iqbal, M.T. Quaicoe, J.E., 2009, "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review", Applied Energy, Vol. 86, pp. 1823- 1835. https://doi.org/10.1016/j.apenergy.2009.02.017
  9. Kim, H. Lee, S. Son, E. Lee, S. Lee, S., 2012, "Aerodynamic noise analysis of large horizontal axis wind turbines considering fluid-structure interaction", Renewable Energy, Vol. 42, pp. 46-53. https://doi.org/10.1016/j.renene.2011.09.019
  10. Kinnas, S.A. Xu, W., Yu, Y.-H., He, L., 2011, "Computational Methods for the Design and Prediction of Performance of Tidal Turbines", Journal of Offshore Mechanics and Arctic Engineering, Vol. 134, No. 1, pp. 011101-1-10.
  11. Lee, J.H. Park, S. Kim, D.H. Rhee, S.H. Kim, M.C., 2012, "Computational methods for performance analysis of horizontal axis tidal stream turbines", Applied Energy, Vol. 98, pp. 512-526. https://doi.org/10.1016/j.apenergy.2012.04.018
  12. Lee, S.H. Lee, S.H. Jang, K. Lee, J. Hur, N., 2010, "A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks", Current Applied Physics, Vol. 10, pp. S137-S141. https://doi.org/10.1016/j.cap.2009.11.018
  13. Mason-Jones, A. O'Doherty, T. O'Doherty, D.M. Evans, P.S. Wooldridge, P.S., 2008, "Charaterisation of a HATT using CFD and ADCP site data", Proc World Rnewable Energy Congress, Glasgow, WREC-X, pp. 941-946.
  14. McCombes, T. Johnstone, C. Grant, A., 2011, "Unsteady wake modeling for tidal current turbines", IET Renewable Power Generation, Vol. 5, No. 4, pp. 299-310. https://doi.org/10.1049/iet-rpg.2009.0203
  15. Menter, F.R., 1994, "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, pp. 1598-1605. https://doi.org/10.2514/3.12149
  16. Nicholls-Lee, R.F. Turnock, S.R. Boyd, S.W., 2011, "A method for analysing fluid structure interactions on a horizontal axis tidal turbine", 9th European Wave and Tidal Energy Conference, Southampton, UK, Sep. 5-9.
  17. Park, S.W. Park, S. Rhee, S.H., 2012, "Performance analysis of horizontal axis tidal stream turbine considering the effect of blade deformation", Proc Advances in Civil, Environmental, and Materials Research, Seoul, Korea, Aug. 26-29.
  18. Rhie, C.M. Chow, W.L. 1982, "A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation", AIAA Paper 82-0998.
  19. Sieber, G., 2002, "Numerical simulation of fluid-structure interaction using loose coupling methods", PhD Thesis, at the Department of Numerical Methods in Mechanical Engineering, Darmstadt University of Technology.
  20. Young, Y.L., 2008, "Fluid-structure interaction analysis of flexible composite marine propellers," Fluids and Structures, Vol. 24, pp. 799-818. https://doi.org/10.1016/j.jfluidstructs.2007.12.010