• 제목/요약/키워드: FRP wrapping

검색결과 52건 처리시간 0.021초

아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구 (An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets)

  • 최기선;유영찬;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets

  • Hodhod, O.A.;Hassan, W.;Hilal, M.S.;Bahnasawy, H.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.727-745
    • /
    • 2005
  • The present study is an experimental investigation into the behaviour of high strength concrete square short columns subjected to biaxial bending moments and strengthened by GFRP laminates. The main objectives of the study are: to evaluate the improvement in the structural performance of HSC short square columns subjected to small biaxial eccentricity when strengthened by externally applied FRP laminates, and to investigate the optimum arrangement and amount of FRP laminates to achieve potential enhancement in structural performance especially ductility. The parameters considered in this study are: number of FRP layers and arrangement of wraps. The load eccentricity is kept corresponding to e/t = 0.125 in two perpendicular directions to the columns principal axes, and the wraps are applied in single or double layers (partial or full wrapping). In the present work, test results of five full scale concrete columns are presented and discussed. The study has shown that FRP wraps can be used successfully to enhance the ductility of HSC columns subjected to biaxial bending by 300%.

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향 (Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate)

  • 박상렬
    • 콘크리트학회논문집
    • /
    • 제14권5호
    • /
    • pp.645-652
    • /
    • 2002
  • 본 논문은 탄소 FRP 판을 이용한 철근 콘크리트 보의 휨 보강효과와 거동에 대한 연구이다. 본 연구에서의 실험인자로는 휨보강 탄소 FRP 판의 부착길이와 탄소 FRP 쉬트의 복부정착 길이이다. 시험보는 탄소 FRP 판으로 인장면에 부착하여 휨 보강하고 FRP 판을 탄소 FRP 쉬트로 복부에 정착하였다. 일반적으로 복부정착이 없는 휨 보강된 보들의 파괴형태는 횡방향 주철 근을 따라 발생한 콘크리트 덮개 박리파괴를 나타내었다. 반면, 탄소 FRP 쉬트로 복부 정착된 휨 보강 보들은 CFRP 파단파괴 후 콘크리트 경계면 전단 박리파괴를 나타내었다. 보강된 보들의 극한하중과 극한처짐은 FRP 판의 휨 부착길이의 증가에 따라 증가하였다. 또한, 휨 보강된 보들은 FRP 쉬트의 복부정착 길이의 증가에 따라 극한하중과 극한처짐 값이 증가하였다. 특히, 복부 정착한 보들은 최대 극한하중에 도달한 후에도 상당한 극한하중 지지능력을 상당한 극한 처짐 시까지 유지하였다. 시험보의 길이에 걸친 FRP 판의 변형률 분포는 휨 모멘트도의 모양과 거의 유사하여 전단지간에서 일정한 전단응력 분포를 가정할 수 있었다. 전지간을 휨 보강한 보에 있어서는 콘크리트와 FRP 쉬트에 의한 경계면에서의 극한전단 저항강도는 복부정착 길이가 늘어남에 따라 증가하였다. 전단 저항강도 중에서 본 실험에서 사용한 복부 정착 FRP 쉬트도 일부의 전단 저항강도를 부담하였다.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가 (Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands)

  • 정규산;박기태;유영준;서동우;김병철;박준석
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.118-125
    • /
    • 2017
  • 본 논문은 FRP Hybrid Bar의 최적 부착 성능 도출을 위한 실험 결과를 나타낸다. FRP Hybrid Bar는 이형 철근의 부식문제를 해결하기 위하여 이형 철근 외측에 유리섬유를 감싸 만들어졌다. 콘크리트와의 부착 성능 향상을 위해 매끈한 FRP Hybrid Bar 표면에 수지와 규사를 이용하여 코팅하였고 수지의 종류 및 점도, 그리고 규사의 크기를 실험 변수로 하여 FRP Hybrid Bar의 부착 성능을 실험적으로 평가하였다. FRP Hybrid Bar의 부착 성능 평가를 위해 한 변의 길이가 200 mm인 정육면체 콘크리트 블록에 FRP Hybrid Bar를 매립하였고, 인발 실험을 통하여 FRP Hybrid Bar와 콘크리트의 계면에서의 최대 하중과 슬립을 측정하였다. 실험 결과로부터, 각 실험 변수에 따른 최대 하중 및 부착 강도를 산정하였고 FRP Hybrid Bar의 부착 성능이 가장 우수한 수지 종류 및 점도, 그리고 규사 크기를 도출하였다. 에폭시 수지와 5호 규사를 사용한 실험체의 최대부착강도는 이형철근의 최대부착강도 대비 약 35% 정도 증가되었다.

고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험 (Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets)

  • 신지욱;전종수
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Modeling the confined compressive strength of hybrid circular concrete columns using neural networks

  • Oreta, Andres W.C.;Ongpeng, Jason M.C.
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.597-616
    • /
    • 2011
  • With respect to rehabilitation, strengthening and retrofitting of existing and deteriorated columns in buildings and bridges, CFRP sheets have been found effective in enhancing the performance of existing RC columns by wrapping and bonding CFRP sheets externally around the concrete. Concrete columns and piers that are confined by both lateral steel reinforcement and CFRP are sometimes referred to as "hybrid" concrete columns. With the availability of experimental data on concrete columns confined by steel reinforcement and/or CFRP, the study presents modeling using artificial neural networks (ANNs) to predict the compressive strength of hybrid circular RC columns. The prediction of the ultimate confined compressive strength of RC columns is very important especially when this value is used in estimating the capacity of structures. The present ANN model used as parameters for the confining materials the lateral steel ratio (${\rho}_s$) and the FRP volumetric ratio (${\rho}_{FRP}$). The model gave good predictions for three types of confined columns: (a) columns confined with steel reinforcement only, (b) CFRP confined columns, and (c) hybrid columns confined by both steel and CFRP. The model may be used for predicting the compressive strength of existing circular RC columns confined with steel only that will be strengthened or retrofitted using CFRP.