• Title/Summary/Keyword: FRP confined concrete

Search Result 85, Processing Time 0.021 seconds

An Experimental Study on Precast Bridge Piers Confined by FRP for Technical Development of Accelerated Construction (급속시공기술 개발을 위한 FRP로 보강된 프리캐스트 교각의 실험 연구)

  • Lee, Seung-Hye;Lee, Yeong-Ho;Hwang, Yoon-Koog;Song, Jae-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.237-240
    • /
    • 2008
  • Today, some bridges or highways are becoming superannuated in Korea. Also, in this section, rehabilitation, replacement and expansion are necessary to increasing traffic volumes these days. Bridge reconstruction is major problem because it has relation to civil application, economical loss and loss of vehicles made a detour while this work. Many precast components and methods of construction are developed for this issue. Many research of various precast components and new materials are being performed owing to apply to prefabrication bridges. The present paper represents experimental studies on the performance of precast CFFT pier model. Also, stay-in-place RC pier and stay-in-place CFFT pier are made an experiment on due to comparing test results. Hysteretic responses of all columns are obtained through the test. Compared with the displacement ductility factors, conclusions of seismic performances can be made.

  • PDF

Strengthening Efficiency for the Various Corner Shapes of RC Member confined with Continuous Fiber Sheets (연속섬유 시트로 보강된 RC 부재의 모서리 형상에 따른 보강 효율에 관한 연구)

  • Ko, Hune-Bum;Lee, Jin-Seop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • Recently, fiber reinforced polymers(FRP) composite materials are used extensively in the rehabilitation of concrete structural members. A main application is to wrap beams and columns using the continuous fibers sheets to improve their strength and ductility. The corner chamfering affects significantly the performance of the continuous fibers sheets, and could lead to environmental problem with waste and dust. The main purpose of this paper is to verify the effect of corner conditions on the strength of the continuous fiber sheets, and to introduce new attached components which can avoid environmental problem. A total of 15 specimens were tested and carefully checked for three types of continuous fiber sheets(carbon, glass, and aramid) and three types of corner conditions(non-chamfering, chamfering, and device attaching). It is proved that the devices proposed in this research have some capabilities to use for RC member. But additional research will be needed for commercializing.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Experimental Study on Compressive Strength of Concrete Column Retrofitted by Carbon FRP Sheet (탄소섬유시트로 보강된 콘크리트 기둥의 압축성능 평가를 위한 실험연구)

  • Yoo, Youn-Jong;Lee, Kyoung-Hun;Kim, Heecheul;Lee, Young-Hak;Hong, Won-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2008
  • In 1980 and 1990's most of residential buildings were constructed with relatively low strength concrete of 18 MPa. And, columns were designed considering only vertical loads. In this study, compressive strength tests for low strength RC columns retrofitted by carbon fiber sheets were carried out. Carbon fiber sheet provides constructability and high tensile strength as well as good corrosion resistance characteristics. A pair of carbon sheets were wrapped with ${\pm}60^{\circ}$ angle with respect to longitudinal direction of RC column to increase structural capacity against axial and lateral load simultaneously. Strength and strain patterns and failure modes of specimens were analyzed and prediction equation of increased compressive strength of RC column confined by carbon fiber sheet was proposed based on regression analysis.

Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet (CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과)

  • Moon, Kyoung-Tae;Park, Sang-Yeol;Koh, Kwang-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2017
  • This study deals with the strengthening effect and behavioral characteristics of square concrete column wrapped with carbon FRP sheet. The increase in axial compression capacity comes from the confinement effect of wrapped CFRP sheet. Because of the shape of square concrete column, the confinement effect is smaller than that in circular column. For the experimental program, four parameters including the number of sheet, the size of column specimen, the aspect ratio, the corner rounding, and the transformation in shape from square to circular were selected to examine the strengthening effect and behavioral characteristics for each parameter. Experimental program comprised fifty five square concrete column specimens for different eleven types. The compression test results confirmed that the strengthening effect can be increased by the confinement of wrapped and bonded CFRP sheet. However, the confining effect was decreased with the increase of square column size. The other hand, the ductility in square concrete column greatly increased due to caging effect of CFRP sheet. The transformation in shape from square to circular considerably increased both the compressive strength and the ductility of the concrete column wrapped with CFRP sheet. In addition, using test results and existing studies, accuracy and reliability of the existing strength models for CFRP-confined square concrete are verified.