• Title/Summary/Keyword: FRP Concrete

Search Result 760, Processing Time 0.03 seconds

Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar (겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.186-194
    • /
    • 2009
  • This is a part of the extensive ongoing investigation being carried out by author to develop appropriate design procedure of the concrete member reinforced with FRP rebars instead of conventional steel rebars. This study presents the experimental results of a research programme to assess the structural characteristics of spliced rebar in reinforced concrete members with FRP reinforcement. The test variables are the diameter of FRP rebar and the embedment length. The development length (ld) was calculated according to the ACI 440 for FRP rebars in concrete. A total of 14 concrete beams reinforced with spliced FRP rebars and 4 reference beams reinforced with non-spliced FRP rebars were tested. The effects of bar size (10, 13, 16 and 19 mm) and splice length (from 0.72 to 1.58ld) on the bond strength were empirically evaluated. The test results indicate that a modification factor of 1.3 and 1.6 is relatively sufficient for the bond development length of glass FRP rebars in order to achieve an adequate tension lap splice length.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Modeling of Debonding Detection Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 박리 탐사 모델링)

  • Rhim Hong-Chul;Lee Hyo-Seok;Woo Sang-Kyun;Song Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.35-39
    • /
    • 2006
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques. microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymer (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in actual measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with horn antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding. between concrete and FRP. Also, the equipment of ultrasonic method which is commercialized are used at the same condition. Both of the results are analyzed in comparison of each other. Microwave and ultrasonic methods have been used for the detection of debonding between concrete and fiber-reinforced plastic (FRP).

  • PDF

A Study on Shear Characteristics for FRP Composite Girder Filled with Concrete (콘크리트 충진 FRP 거더의 전단특성에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.90-94
    • /
    • 2008
  • This study suggested a section of a new module that will allow for applying a large section in order to solve the technical difficulties mentioned above and to secure low stiffness of FRP, developed a new FRP + concrete composite girder that is filled with the appropriate amount of concrete. To identify the structural behavior of this FRP + concrete composite girder, experiments were conducted to measure its shear strength according to the difference in the strength of confined concrete and variation of the shear span to depth. The results of the shear strength test confirmed the composite effect from confining concrete and the effect of increase in strength proportional to the strength of concrete.

  • PDF

Development of Force-Based Fiber Frame Finite Element for FRP Concrete Members with Multi-axial Behaviors (다축거동을 고려한 FRP 콘크리트 부재의 층상화 하중-기초 유한요소모델 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Park, Moon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.78-81
    • /
    • 2006
  • In the current study, a force-based fiber frame finite element model of FRP concrete structural members has been developed. For compressive behaviors of confined concrete wrapped by FRP jackets, the multiaxial behavior of concrete has been considered with the equivalent tangent modulus of concrete. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimensional stress states. The force-based finite element formulation is based on the force-interpolation functions within the element without using the displacement shape functions to satisfy the equilibrium in element levels.

  • PDF

Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members (FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF

Analysis of Composite Behavior between FRP-Concrete Composite Deck and Girder (FRP-콘크리트 합성 바닥판과 거더와의 합성 거동 분석)

  • Cho Keun Hee;Cho Jeong-Rae;Kim Sung Tae;Chin Won Jong;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.379-382
    • /
    • 2005
  • Composite behavior between FRP-concrete composite deck and girder is investigated by numerical analysis and parametric experiments. Compared to reinforced concrete deck, the weight of FRP-concrete composite deck is about 64$\%$ but the performance of composition is 90$\%$. Therefore the FRP-concrete composite deck has the advantage of longitudinal section stiffness increase in case of composition to the girder. The experiment, according to the variation of stud diameter, stud length and bedding thickness, is carried out. As a result, the static failure strength increases as stud diameter and length increase and bedding thickness decreases.

  • PDF

Flexural Behavior of Strengthened RC Beams Using FRP Sheets (FRP시트를 이용한 보강 철근콘크리트보의 휨 거동)

  • 박대효;부준성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.75-80
    • /
    • 2001
  • This paper investigates the flexural behavior of reinforced concrete beams strengthened with externally bonded fiber reinforced plastic (FRP) sheets is investigated in this work. FRP is attractive for strengthening the RC beams due to its good tensile strength, low weight, resistance to corrosion, and easy applicability. A simple and direct analytical procedure for evaluating the ultimate flexural capacity of FRP strengthened reinforced concrete (SRC) beams is presented using the equilibrium equations and compatibility of strains. Upper and lower limits of FRP sheet area to ensure the ductile behavior are established. A parametric study is conducted to investigate the effects of design variables such as sheet area, sheet stiffness and strength, concrete compression strength, and steel reinforcement ratio. The analytical procedure is compared with results of experimental data available in the literature.

  • PDF

Damping determination of FRP-confined reinforced concrete columns

  • Li, Xiaoran;Wang, Yuanfeng;Su, Li
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.163-174
    • /
    • 2014
  • Damping as a material property plays an important role in decreasing dynamic response of structures. However, very little is known about the evaluation and application of the actual damping of Fiber Reinforced Polymer Confined Reinforced Concrete (FRP-C RC) material which is widely adopted in civil engineering at present. This paper first proposes a stress-dependent damping model for FRP-C RC material using a validated Finite Element Model (FEM), then based on this damping-stress relation, an iterative scheme is developed for the computations of the non-linear damping and dynamic response of FRP-C RC columns at any given harmonic exciting frequency. Numerical results show that at resonance, a considerable increase of the loss factor of the FRP-C RC columns effectively reduces the dynamic response of the columns, and the columns with lower concrete strength, FRP volume ratio and axial compression ratio or higher longitudinal reinforcement ratio have stronger damping values, and can relatively reduce the resonant response.

The Study of Optimal Design of FRP-Concrete Composite Deck (FRP-콘크리트 합성 바닥판의 최적설계에 관한 연구)

  • 이현섭;조성배;박장호;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.511-516
    • /
    • 2004
  • The objective of this study is to optimally design FRP-concrete members of a bridge structure. Using the GENESIS7.0 that is a commercial optimization program we performed an optimal design with design parameters that consist of height, width of FRP member, height of concrete. And we practiced an optimal design with the design variables, thickness of upper flange, bottom flange, and web. The results of these studies are summarized as follows : (1) Thickness of composite-concrete is proper at over loon (2) FRP member reaches the optimal section when the width of the FRP member is 20cm its height is 10cm and the height of the composite-concrete is 12cm.

  • PDF