• Title/Summary/Keyword: FRP 접착제

Search Result 17, Processing Time 0.025 seconds

A Study on the Characteristics of FRP Composites and Structural Adhesives (FRP선체 복합재료와 구조용 접착제의 실험적 연구)

  • Choi, Han-Kyu
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.26
    • /
    • pp.4-23
    • /
    • 2009
  • 선체용 복합재료 및 구조용 접착제와 신공법인 진공 성형법으로 건조한 레저선박에 강화플라스틱 구조기준을 그대로 적용하기에는 무리가 있으며, 따라서 복합재료, 수지, 접착제 및 진공 성형법 등 현장조사를 토대로 복합소재 및 접착제를 이용한 시험편을 제작하여 복합재료의 기계적 특성, 구조용 접착제에 대한 신뢰성 평가 및 국내외 기준 비교 검토를 통한 국내 실정에 적합한 검사기준을 제안하고자 한다.

  • PDF

Pot Life of Structural Adhesives for FRP Composite Used in Strengthening RC Members (구조보강용 FRP 함침·접착수지의 사용가능시간 분석)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • Pot life of two-component adhesives such as epoxy resin used in saturating FRP composite is defined as a certain time periods which can guarantee the bond performance and workability of epoxy resin. Therefore, adhesion procedure in strengthening RC members should be completed before chemical hardening is going on at job site. It has been known that there are two types of test method to evaluate the pot life of structural adhesive based on apparent viscosity or temperature change. This study is to verify the test methods how to assess pot life of structural adhesive for FRP composites by means of changing in apparent viscosity and means of exothermic reaction temperature proposed in existing test standards. Results of each test method were compared and analyzed, and reasonable test and evaluation method were suggested.

Comparative Study on Test Methods for Mechanical Properties of Structural Adhesives Used in FRP Strengthening (구조보강용 FRP 함침·접착수지의 역학적 특성 분석을 위한 시험방법 비교 연구)

  • You, Young Chan;Choi, Ki Sun;Kim, Keung Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.103-112
    • /
    • 2008
  • Pull-off test is generally used to evaluate bond strength of FRP composite with concrete at job site. However, some damages on FRP composites can not be avoided during pull-off test and moreover test range of pull-off strength is limited by maximum tensile strength of concrete. Accordingly, it is required to set-up a test method that can evaluate mechanical properties of structural adhesive indirectly prior to pull-off test. In this study, the standard test methods for structural adhesive which can simply evaluate mechanical performance of adhesive were suggested through comparative experiments from each different standard in various countries. Particularly, gluing thickness of adhesive in tensile lap-shear tests, the section dimension of compression and bending test specimens become unified, and standard test specimen size is achieved by test results.

Examination of Ingredients of High Temperature Heat Resistant Inorganic Fire-Resistant Adhesive Using XRD Analysis (XRD 분석을 이용한 고온가열 무기계 내화 접착제의 성분검토)

  • Cho, Hyeon-Seo;Ji, Woo-Ram;Shin, Ki-Don;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.81-82
    • /
    • 2018
  • The structure of the RC structure is actively reinforcing the structure of the building which has suffered from aging, artificial and natural damage of the building. Among various reinforcement methods, epoxy adhesive is used to attach FRP in FRP reinforcement method which is reinforcing by attaching FRP to the structural part. At this time, the epoxy adhesive having a low critical temperature has a sudden adhesive failure upon exposure to heat, and thus, the development of an inorganic fireproof adhesive having a high critical temperature has progressed. Therefore, in this study, the compositional change of inorganic fire - resistant adhesive exposed to high temperature heat was analyzed by XRD.

  • PDF

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

Strength Evaluation for Adhesive Bonds of Adhesive with FRP Ship Body Structure (FRP 선체구조용 접착제의 접착강도 평가)

  • Ahn, Seok-Hwan;Choi, Han-Kyu;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.146-152
    • /
    • 2010
  • Recently, the applied frequency of composite materials was increased from the viewpoint of lightweight, high strength and low cost when a leisure boat and a fishing boatwere built. However, studies on the mechanical properties of composite material with ship are rare. Specially, a leisure boat and fishing boat with FRP had been built by hand lay-up method. However, the vacuum infusion method is rising recently for ship building. The manufactured these FRP plates were combined by using the adhesive. Therefore, in this study Cleavage peel strength, Shear strength and fatigue limit of adhesive bonds by tensileloading were estimated. From test results, the strengths of FRP specimens made by the vacuum infusion method are higher than that of the hand lay-up method.

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar (알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가)

  • Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2018
  • In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.

Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate (FRP 보강적층판의 접착성능 및 파괴인성평가)

  • Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.868-875
    • /
    • 2015
  • In order to replace existing slit type steel plate on the wooden structure joint, the FRP-reinforced laminated plates were produced. Four types of FRP-reinforced laminated plates were produced according to the type of reinforcement and adhesive, and before applying to the joint, the adhesion performance test according to KSF 3021 and KSF 2160 and the Compact Tension (CT) type fracture toughness test specified in ASTM D5045-99 were carried out. As a result of adhesion performance test, all GFRP textile, GFRP sheet, and GFRP Textile-Sheet type FRP-reinforced laminated plates satisfied the requirement of soaking delamination percentage with smaller than 5% based on KS standard. However, aramid type specimen satisfied the standard as the soaking delamination percentage of 4.8% but it did not satisfied the standard as the water proof soaking delamination percentage of 70%. As a result of fracture toughness test, the volume ratio of reinforcement to timber became 23% so that the strength of FRP-reinforced laminated plates increased by two to four times in comparison to the control specimen. It was confirmed that the GFRP Textile-Sheet type specimen was most resistant to the fracture most since the ratio of stress intensity factor compared with that of the control increased to 61% owing to the parallel arrangement of glass fiber to the load. As a result of tensile shear strength test using FRP-reinforced laminated plates and nonmetal dowels, it is about 12% lower than metal connectors.

A Study on the Environmental Effects of the Carbon Composite /Insulation Rubber Interfaces (탄소계 복합재와 내열 고무 경계면의 환경 노화에 따른 특성 연구)

  • 윤영주;박병열;박현목;정상기
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.34-34
    • /
    • 1998
  • 일반 항공기 및 상용 복합 구조재의 경우에는 내부에 결함이 생길 경우 유지 및 보수가 용이하나 복합재 압력 용기의 경우에는 다양한 환경 변화를 겪게 되며 또한 유지 및 보수가 힘들다는 제약 조건이 있으므로 단열재로 사용되는 인슈레이션 고무와 FRP간의 접착, 가황 고무와 미가황 고무 사이의 접착 등 여러 가지 이종 재질들 간의 접착이 매우 중요한 변수가 될 뿐만 아니라 압력 용기의 전체적인 성능에도 상당한 영향을 미치게 된다. 이러한 시스템들은 제작 조건에 따라 결함이 발생하는 빈도가 차이가 나며 특히 가혹한 환경 조건하에서도 내구성을 보여야 하므로 본 실험에서는 다양한 환경 조건, 성형 조건을 가지는 FRP/고무, 고무/고무 접착 시스템의 계면 접착력을 측정한 후 이로부터 환경 노화에 저항성이 강한 최적의 접착제 및 접착 조건 등을 확립하고자 하였다.

  • PDF

Strengthening of Reinforced Concrete Structures using Externally Prestressed CFRP plates (외부 프리스트레스트 탄소섬유판에 의한 구조물 보강공법)

  • 박선규;유영찬
    • Computational Structural Engineering
    • /
    • v.17 no.1
    • /
    • pp.39-42
    • /
    • 2004
  • 콘크리트 구조물에 대한 보강공법은 1950년도에 개발된 강판보강공법을 위시로 하여 강연선에 의한 외부프리스트레싱 공법으로 발전하고 있으며, 약 10년전부터는 신소재인 FRP(Fiber Reinforced Polymer)에 의한 보강공법이 본격적으로 개발되어 실용화되고 있다. 강판보강공법은 에폭시 등의 접착제를 이용하여 콘크리트 인장측에 강판을 접착함으로써 강도 및 강성을 증가시키는 공법으로 강판을 보강재로 이용함으로써 공법에 대한 인지도가 높은 장점이 있는 반면, 재료의 가공 및 취급이 어려우며 중량이 커 자중이 증가되는 단점이 있다. 또한, 강재의 부식위험이 상존하고 있어 이에 대한 세심한 배려 및 주기적인 유지관리를 필요로 한다.(중략)