• Title/Summary/Keyword: FRP 보강

Search Result 463, Processing Time 0.043 seconds

Evaluation on the Thermal Resistance Capacity of Fire Proof Materials for Improving Fire Resistance of Near-Surface-Mounted FRP in Concrete (콘크리트내에 표면매입 보강된 FRP의 내화성능 향상을 위한 내화단열재 열저항성능 평가)

  • Yeon, Jea-Young;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.51-58
    • /
    • 2014
  • This paper presents a fire exposure test result to evaluate fire resistance capacity of retrofit method using FRP (Fiber Reinforced Polymer) in reinforcement concrete structure. Especially, this paper focused on near-surface-mounted retrofit method; FRP is mounted into the groove after making a groove in concrete. In the test, main parameters are retrofit method and materials for fire proofing. Spray type of perlite and board type of calcium silicate were considered as external fire proof on surface while particle of calcium silicate and polymer mortar as internal one in groove. By increasing the temperature of inside heating furnace, the transfer of temperature from surface of fire proofing material to groove in specimen was measured. As a result, fire proofing using the board of calcium silicate was more effective to delay the heat transfer from outside than spraying with perlite. It was found that the fire proofing could resist outside temperature of $820^{\circ}C$ at maximum to keep the temperature of epoxy below glass transit temperature (GTT).

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.

Experimental Study on Shear Strength of AFRP-Reinforced Concrete Deep Beam (AFRP 보강근 콘크리트 깊은보의 전단강도에 대한 실험적 연구)

  • Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.445-448
    • /
    • 2010
  • 본 연구는 섬유 보강 폴리머(Fiber Reinforced Polymers, 이하 FRP) bar로 보강된 콘크리트 깊은 보의 전단강도를 평가하기 위하여 전단경간비, 보강비, 주근의 종류를 변수로 총 6개의 실험체에 대한 전단 실험을 수행하였다. 전단실험을 토대로 FRP bar로 보강된 콘크리트 깊은보의 균열 및 처짐에 대한 거동 조사를 수행하였으며, ACI 318-08의 스트럿-타이 모델을 이용한 전단강도와 아치작용을 고려한 기존 제안식에 의한 전단강도를 비교 평가하였다. 그 결과, FRP bar로 보강한 실험체와 철근으로 보강한 실험체는 상이한 전단거동을 보였으며, FRP bar로 보강한 경우의 전단강도가 철근으로 보강한 경우보다 증가하는 것으로 나타났다. 전단강도 산정에 있어서는 ACI 318-08의 스트럿-타이 모델을 이용한 방법이 기존 제안식에 의한 방법보다 상대적으로 정확했다.

  • PDF

Studying on the Hybrid FRP Stiffener for the Performance Improvement of Strengthened RC Beam (철근콘크리트 보의 성능개선을 위한 Hybrid FRP 보강재 연구)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.243-244
    • /
    • 2010
  • Reinforced concrete beam are very diverse materials that are used to bending reinforcement. Recently the case of FRP flexural reinforcement is actively being used is an excellent weight - rigidity. However, use of FRP bending reinforcement in brittleness material properties of concrete in an actual field application causes destruction of detachment and attachment is being considered as a major cause of destruction. For hybrid laminating plates, tensile and three-point bending tests were performed considering various designs and fabricating methods for hybrid FRP plates. Tensile property of each test specimen was investigated and the research parameter of hybrid laminating plates considered here is the combining ratio of fiber to aluminum contents.

  • PDF

Flexural Behavior of FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동)

  • Yang, Jun-Mo;Shin, Hyun-Oh;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.273-280
    • /
    • 2011
  • Ten high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers were constructed and tested. Six beams were reinforced with two layers of steel, CFRP, and GFRP bar combinations. The other four beams were reinforced with two layers of single type CFRP and GFRP bars, with steel and synthetic short fibers. An investigation was performed on the influence of the parameters on the load-carrying capacity, post cracking stiffness, cracking pattern, deflection behavior, and ductility. The low post cracking stiffness, large deflection, deep crack propagation, large crack width, and low ductility of FRP bar-reinforced beams were controlled and improved by positioning steel bars in the inner layer of the FRP bar layer. In addition, the addition of fibers increased the first-cracking load, ultimate flexural strength, and ductility as well as the deep propagating cracks were controlled in the FRP bar-reinforced concrete beams. The increased ultimate concrete strain of fiber-reinforced concrete should be determined and considered when FRP bar-reinforced concrete members with fibers are designed.

Structural Performance of Reinforced Concrete Shear Columns Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근 콘크리트 전단기둥의 보강성능 평가)

  • Lee, Kang Seok;Byeon, In Hee;Lee, Moon Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.132-142
    • /
    • 2007
  • In this study, a structural performance of R/C columns controlled by shear, strengthened with Sprayed FRP, was investigated. For this purpose, six 2/3-scaled column specimens were designed and tested by the pseudo-static reversed cyclic load under a constant axial load, which is 10% of the nominal axial strength of the column. Four specimens were strengthened by Sprayed FRP with different combinations of short fibers (carbon or glass) and resins (epoxy or vinyl ester). For comparison purpose, tests of a specimen strengthened with carbon fiber sheet (CFS) and a control specimen without strengthening were carried out, respectively. The result reveals that shear strengths and ductility capacities of columns strengthened with Sprayed FRP improved remarkably, compared to those of the control column, and the Sprayed FRP technique developed in this study is able to use the strengthening scheme of existing R/C columns.

Design of High Strength Underground FRP Septic Tank Stiffened by Circular Steel Pipe (원형강관으로 보강된 지중매립형 FRP 개인하수 처리시설의 설계)

  • Cho, Kwang Je;Kim, Sung Bo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.171-181
    • /
    • 2012
  • The design of high strength underground septic tank stiffened by steel pipe is presented and the ultimate behavior is investigated according to the full scale experiments for three types of specimens. The limitation of the current design specification are pointed out and the general design procedure of private sewage treatment facility are newly developed considering thickness of FRP shell, types of steel pipe stiffer and diaphragm wall. The direct tensile and bending test for FRP material of septic tank were performed. The increase effect of ultimate strength due to the circular steel pipe are investigated by the full scale field test and compared with the results by the finite element analysis.

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP (FRP로 보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.101-111
    • /
    • 1998
  • This study presents test results of RC beams strengthened by carbon fiber sheet(CFS), carbon fiber reinforced plastics(CFRP) or glass fiber reinforced plastics(GFRP) for increasing shear resistance. Nineteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials(CFS, GFRP, CFRP), shear-strengthening methods(wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The test results show that shear-damaged RC beams strengthened by FRP(CFS, GFRP, CFRP) have more improved the shear capacity. The mathematical model based on plastic theory was also developed to predict shear strength of shear-damaged RC beams strengthened by FRP. The predictions using the mathematical model. are agreed with the observations from the observed shear strengths for 19 test beams.

Flexural Crack for Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 휨균열)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.273-276
    • /
    • 2008
  • The use of FRP(Fiber Reinforced Polymer) bars to replace conventional steel bars in reinforcing concrete structures is currently encouraged by many structural engineers, especially for their noncorrosive properties. The partial inferiority of the bond and mechanical properties for FRP bars, however, leads to wider and deeper cracks compared with those of steel reinforced concrete structures. This paper presents experimental results of concrete beams reinforced with FRP bars tested under static loading conditions up to failure. The study focuses on the effects of the reinforcement ratio on the behavior of concrete beams at various stages during loading. The study also attempts to establish a theoretical basis for the development of simple and rational design procedures for concrete beams reinforced with FRP bars.

  • PDF

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.