• Title/Summary/Keyword: FOXO1

Search Result 34, Processing Time 0.022 seconds

Antioxidant Activity and Its Mechanism of Paeonia lactiflora Pall Extract

  • Heo, Jee-In;Kim, Jeong-Hyeon;Lee, Jeong-Min;Kim, Sung-Chan;Park, Jae-Bong;Kim, Jaebong;Lee, Jae-Yong
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • Paeonia lactiflora Pall (PL) has been used as a traditional herbal medicine in China, Korea, and Japan for more 1,200 years. PL has reported to have antioxidant activity and protective effect of cells from oxidative stress, although the mechanism has not been verified. FOXO3a is a transcription factor that binds to its target gene's consensus FOXO binding site. FOXO3a protein modulates the various biological functions including cell cycle control, apoptosis, DNA repair, and ROS detoxification. Therefore, FOXO3a activity is associated with cancer, aging, diabetes, infertility, neurodegeneration, and immune system dysfunction. Here we found that FOXO3a was activated by PL extract. Transcriptional target genes such as MnSOD, p27, and GADD45 were activated by PL extract. Protein levels of MnSOD and catalase were increased, consequently, ROS level was reduced in HEF cells by PL extract. These findings suggest that PL extract has an antioxidant activity through FOXO activation and thereby activation of FOXO target genes, MnSOD and catalase.

Replication Study of Association between Forkhead Box O3 (FOXO3) Polymorphisms and Tuberculosis in Korean Population

  • Park, Sangjung;Kim, Sung-Soo;Jin, Hyun-Seok;Cho, Jang-Eun
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.42-46
    • /
    • 2020
  • Tuberculosis (TB) remains a major health problem worldwide. TB depends not only on the characteristics of the Mycobacterium tuberculosis (MTB) but also on the genetic susceptibility of infected patients. Recent studies have suggested that FOXO3 play an important role in the human immune associated disorder, such as TB. It was previously reported that FOXO3 genetic variants associated with a risk of TB in Chinese population. In this study, we confirm whether the genetic polymorphism of the FOXO3 gene, which was previously in Chinese, is reproduced in Korean population. Of the 154 SNPs were extracted from the FOXO3 gene, reproducibility analysis of the four SNPs performed in the previous study showed that there was a statistically significant correlation in the three SNPs (rs4946935, rs1536057, rs3800228). This study suggests that polymorphism of the FOXO3 gene in Koreans may affect the onset of tuberculosis and could be used to treat and prevent tuberculosis.

Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis

  • Yan Liang;Huimin Wang;Jin Chen;Lingyan Chen;Xiaoyong Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.

Mechanism for Antioxidant Activity of Nardostachys chinensis root Extract

  • Heo, Jee-In;Kim, Jeong-Hyeon;Lee, Jeong-Min;Kim, Sung Chan;Park, Jae-Bong;Kim, Jaebong;Lee, Jae-Yong
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Nardostachys chinensis (N. chinensis) has been used in traditional medicine as a sedative and analgesic. It has been reported that N. chinensis extract has an antioxidant activity. However, the mechanism has not been elucidated. In this study, we showed that FOXO3a was activated by N. chinensis extract. FOXO3a is a transcriptional factor that involved in cell cycle arrest, DNA repair, apoptosis, and detoxification of reactive oxygen spices (ROS). Protein level of FOXO3a was increased by N. chinensis extract whereas phospho-FOXO3a (Thr 32) was not changed. Promoter activities of target genes of FOXO3a such as MnSOD, p27, and GADD45 were increased by N. chinensis extract. Among target genes, protein level of MnSOD was increased by N. chinensis extract, and this leads to removal of ROS level in human embryonic fibroblast (HEF) cells. These results suggested that N. chinensis extract has an antioxidant activity by upregulation of MnSOD through FOXO3a activation.

Suppression of Foxo3-Gatm by miR-132-3p Accelerates Cyst Formation by Up-Regulating ROS in Autosomal Dominant Polycystic Kidney Disease

  • Choi, Seonju;Kim, Do Yeon;Ahn, Yejin;Lee, Eun Ji;Park, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2021
  • Accumulation of reactive oxygen species (ROS) is associated with the development of various diseases. However, the molecular mechanisms underlying oxidative stress that lead to such diseases like autosomal dominant polycystic kidney disease (ADPKD) remain unclear. Here, we observed that oxidative stress markers were increased in Pkd1f/f:HoxB7-Cre mice. Forkhead transcription factors of the O class (FOXOs) are known key regulators of the oxidative stress response, which have been observed with the expression of FoxO3a in an ADPKD mouse model in the present study. An integrated analysis of two datasets for differentially expressed miRNA, such as miRNA sequencing analysis of Pkd1 conditional knockout mice and microarray analysis of samples from ADPKD patients, showed that miR-132-3p was a key regulator of FOXO3a in ADPKD. miR-132-3p was significantly upregulated in ADPKD which directly targeted FOXO3 in both mouse and human cell lines. Interestingly, the mitochondrial gene Gatm was downregulated in ADPKD which led to a decreased inhibition of Foxo3. Overexpression of miR-132-3p coupled with knockdown of Foxo3 and Gatm increased ROS and accelerated cyst formation in 3D culture. This study reveals a novel mechanism involving miR-132-3p, Foxo3, and Gatm that is associated with the oxidative stress that occurs during cystogenesis in ADPKD.

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.

Screening of Natural Product Libraries for the Extension of Cell Life-span through Immune System (면역시스템을 통한 세포수명연장 천연물질 스크린)

  • Yoo, Bo-Kyung;Kwon, Kisang;Ko, Young Hwa;Kim, Hong Geun;Lee, Seokhyun;Park, Kwan-Ho;Choi, Ji-Young;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.359-363
    • /
    • 2016
  • We have screened four natural products against 640 single compounds, which shows more two folds gene expression for both endoplasmic reticulum aminopeptidase 1 (ERAP1) and FOXO-family transcription factor (FOXO1). The results were as follows. (±)-Car-3-ene-2,5-dione from Asarum sieboldii Miq. is C10H12O2 molecular formula and the 164 kDa molecular weight. Cinobufagin from Bufonis Venennum is C26H34O6 molecular formula and 442 kDa molecular weight. So far reported main biological function is Na+/K+-ATPase inhibition. Corilagin from Euphorbia pekinensis is C27H22O18 molecular formula and 634 kDa molecular weight. Carbonic anhydrase inhibition is well known its biological function. Corydaline from Corydalis turtschaninovii is C22H27NO4 molecular formula and 369 kDa molecular weight. The main biological function is acetylcholinesterase inhibition. In the short future, four types of natural products will be used in longevity experiments with insects. The results may give one of the clues for studying new drug development candidates of the longevity.

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.

Effects of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model (Dexamethasone으로 유도된 근위축 세포모델에서 glucoraphanin의 효과)

  • Jeon, Sang Kyu;Kim, Ok Hyeon;Park, Su Mi;Lee, Ju-Hee;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.28 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • Objectives : Glucoraphanin is one of the well-known natural glucosinolates found in cruciferous plants. In the present study, we investigated the effects and molecular mechanism of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : The cytotoxic effects of glucoraphanin on C2C12 myoblasts or myotubes were evaluated by MTT assay. The glucoraphanin was evaluated effects in dexamethasone-induced skeletal muscle atrophy in C2C12 myotubes using a real-time PCR, western blots analysis, and immunofluorescence staining of myosin heavy chain. Result : Glucoraphanin had no cytotoxicity on both C2C12 myoblasts or myotubes. Dexamethasone markedly induced muscle atrophy by up-regulating muscle-specific ubiquitin E3 ligase markers, atrogin-1 and MuRF1, and down-regulating MyoD, a myogenic regulatory factor whereas co-treatment of glucoraphanin and dexamethasone dose-dependently inhibited it. Furthermore, decreased expressions of p-Akt, p-FOXO1, and p-FOXO3a induced by dexamethasone were reversed by co-treatment with glucoraphanin and dexamethasone. In addition, dexamethasone obviously reduced myotube diameters, while co-treatment of glucoraphanin and dexamethasone increased those to a similar level as control. Conclusions : These results show that glucoraphanin suppresses dexamethasone-induced muscle atrophy in C2C12 myotubes through activation of Akt/FOXO signaling pathway.

Phillyrin Ameliorates Gluconeogenesis by Increasing the Phosphorylation of Akt and AMPK in Insulin Resistant HepG2 Cells (인슐린저항성 HepG2 세포에서 phillyrin의 포도당신생합성 개선효과)

  • Lee, Seung Yeon;Lee, Gi Ho;Kim, Mi Yeon;Chae, Ju Yeon;Kim, Jae Won;Jeong, Hye Gwang
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.3
    • /
    • pp.145-152
    • /
    • 2022
  • Type II diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance, and abnormally elevated hepatic gluconeogenesis is characterized. Phillyrin, one of the major active constituents of Forsythia suspense, is known to possess the anti-inflammatory and anti-oxidant effects. However, the anti-diabetes mellitus effect of phillyrin and its molecular mechanisms are unclear. The aim of the current study was to investigate the role of phillyrin on gluconeogenesis in insulin resistant HepG2 cells. Phillyrin suppressed high glucose (HG)-induced glucose production. In addition, phillyrin reduced HG-induced the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase), major genes in hepatic gluconeogenesis. Phillyrin treatment attenuated HG-induced nucleus protein levels of FOXO1 and HDAC5 and increased the phosphorylation of Akt, AMPK, HDAC5, and FOXO1. The block of AMPK and Akt activity did not exert the inhibitory effect of phillyrin on gluconeogenesis in insulin resistant HepG2. Taken together, these results suggest that phillyrin inhibits gluconeogenesis of hepatocytes to improve glucose metabolism, through the regulation of LKB1/AMPK/HDAC5 and PI3K/AKT/FOXO1 pathway. These results indicate that phillyrin may be useful in improving hepatic gluconeogenesis associated with insulin resistant and T2DM.