• Title/Summary/Keyword: FORCE PLATFORM

Search Result 385, Processing Time 0.049 seconds

An Experimental Analysis on the Stewart Platform-Based 6 Axis Force-Torque Sensor (Stewart Platform 방시그이 6축 힘-토크 센서에 관한 실험적 해석)

  • Han, J.H.;Kang, C.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 1997
  • The paper presents the experimental analysis of a Stewart platform-based force-torque senor. The closed-form solution of forward kinematics of the Stewart platform is derived approximately by way of a linearization technique, and the solution is used in the force analysis of the force-torque sensor. An exper- mental studies show that the proposed method including gravity compensation algorithm is valid for Stew- art platform-based force-torque sensors. The performance of the developed force-torque sensor is evaluated in view of accuracy and linearity in measurements.

  • PDF

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Relationship between the Impact Value of Electronic Body Protector and the Impact Force of Force Platform in the Taekwondo (태권도의 전자호구 충격값과 포스플랫폼 충격력과의 관련성)

  • Bae, Young-Sang
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • Although the electronic body protector has been officially adopted by the World Taekwondo Federation(WTF) in 2006, no scientific information is available about the reliability of its performance. The purpose of this study, therefore, was to investigate the relationship between the impact value of electronic body protector and the impact force of force platform. Male collegiate Taekwondo athletes([MCTA], n=21) and male collegiate Taekwondo students([MCTS], n=20) volunteered to participate in the study. Each subject performed the apchagi, dollyeochagi and dwichagi on the force platform and the electronic body protector. At the apchagi, it showed that MCTS(about 4,700 N) generated more maximum kick force than MCTA(about 3,900 N), but it expressed that MCTA(about 5,300 N) generated more maximum kicking force than MCTS(about 4,400 N) at the dwichagi. At the apchagi and the dwichagi, it indicated the high coefficient of correlation(over r=.8) which supports higher explanation force the relationship between the impact value of electronic body protector and the impact force of force platform, but there was no statistically significant difference at the dollyeochagi.

Evaluation of the Impact Force on the Vertically Placed Force Platform (지면반력 측정기 수직 설치 시 충격력 검증)

  • Choi, Chi-Sun;Shin, In-Sik;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • This study was to evaluate the consistency of the vertical force($F_z$) of the force platform and the impact force. Two experiments were performed. First, the force platform was vertically placed to hang to the wall. While the rotating iron body hit the force platform, $F_z$ was measured. Then $F_z$ was compared with the impact force of the rotating iron body that was precalculated by using the inertia moments and the rotating force. Second, six Taekwondo masters punched the force platform to show what a certain pattern the impart force has. They were asked to punch the target depending on target distances. The target distances were differed from the relative arm segment of subjects as 90%, 80%, 70%, 60%, and 50% (100% target distance equals the aim length of each subject). Pearson's correlations were used between $F_z$ and the impact force. Also the linear regression was also performed to show the linearity. At the first experiment, $F_z$ and the impact force had much correlations and showed linear characteristics. Therefore, $F_z$ could be regarded as the impact force. At the second experiment, the strongest impact force was measured at the target distance of 80% and the time taken to the maximum impact force was within 0.02 seconds. The result of this study recommends that it can help the comparative study between the impact forces and other hitting sports.

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

Evaluation of Dynamic Characteristics of Slipmeters with Force Platform (하중판을 이용한 미끄러짐 측정기의 동력학적 특성 평가)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • The purpose of this study were to evaluate the dynamic characteristics of the portable slipmeters with respect to actual slipping and to compare their output with those of force platform. The selected slipmeters were commonly used devices for slipperiness measurement in situ floors. Their output quantity represented force (BOT-3000), loss of energy(British pendulum striker) and angle of inclination(English XL). The validity of these devices was studied with respect to actual slipping using a force platform. The precision of these devices was also evaluated with force platform. Based on dynamics of human subject behavior when slipping during normal walking, the all devices tested in this study showed poor performances: low built up ratio, low normal pressure, and long contact time prior to slip. Nevertheless, their results reasonably correlated with those calculated from the ground reaction forces generated by the operation of the selected slipmeters on the force platform although the absolute values of COF from these three devices could be quite different. Also the results showed good repeatability under the some test conditions.

Design of a 6-DOF force reflecting hand controller (힘 반향 6자유도 수동조작기의 설계연구)

  • 변현희;김한성;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1513-1518
    • /
    • 1996
  • A force reflecting hand controller can be used to provide more realistic information to the operator of a teleoperation system such as kinesthetic feedback from a slave robot. In this paper, a new design concept of a force reflecting 6-DOF hand controller utilizing the kinematic structure of a Stewart Platform is presented. Based on the optimal design technique of a Stewart Platform, a force reflecting hand controller has been designed and constructed to verify the technical feasibility of proposed design concept. In order to provide an operator with kinesthetic feedback information, a force mapping algorithm based on a reciprocal product of screws has been introduced. Finally, the technical feasibility of the design concept has been demonstrated through some of experimental results of the device under virtual environment on a real-time graphic system.

  • PDF

An Experimental Study on the Stewart Platform-Based 6 Axis Froce/Torque Sensor (Stewart 플랫폼 형식의 6축 힘/토크 센서에 대한 실험적 연구)

  • 강철구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.393-397
    • /
    • 1996
  • A stewart platform-based force/torque sensor with 6 elastic legs was designed and manufactured Kinematic design parameters were determined so that the force/torque sensor might have the isotropic force/torque properities. In a force/torque analysis, it was used the solution of forward kinematics by linearization of the solution of the inverse kinematics. The performance of te force/torque sensor was investigated by measurement experiments. The gravity compensation was conducted to reduce the force and torque effects by the weights of the upper plate, joints and other sensor parts.

  • PDF

Computer Aided Measurement and Analysis of Body Sway Using Force Platform (힘판을 이용한 중심 동요의 자동측정에 관한 연구)

  • Jeong, Byeong-Yong;Park, Gyeong-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 1988
  • An instrumentation system for the automatic measurement of body sway has been developed. The system consists of a force platform, amplifiers, and data acquisition and display software, operating on a computer. We used only the force platform and electronic amplifying unit in Kistler Biomechanics System to obtain precise measurements, and developed the data acquisition and analysis software using an IBM PC With 12 bit A/D converter. The system can be used in various specialized disciplines, such as ergonomics, rehabilitation, neuromuscular control, as well as sprots biomechanics.

  • PDF

Training of Equilibrium Sense Using Unstable Platform and Force Plate (Force Plate 와 불안정판을 이용한 평형감각 훈련)

  • 박용군;유미;권대규;홍철운;김남균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.985-988
    • /
    • 2004
  • This paper proposes a new training system for equilibrium sense and postural control using unstable platform and force plate. This system consists of unstable platform, force plate, computer interface, software and the computer. Using this system and training programs, we perform the experiment to train the equilibrium sense and postural control of subject. To evaluate the effects of balance training, we measured some parameters such as the maintaining time in the target, the moving time to the target and the mean absolute deviation of the trace before and after training. The result shows that this system can improve the equilibrium sense and balance ability of subject. This study shows that proposed system had an effect on improving equilibrium sense and postural control and might be applied to clinical rehabilitation training as a new effective balance training system.

  • PDF