• Title/Summary/Keyword: FOPTD

Search Result 7, Processing Time 0.021 seconds

Robustness Analysis of Pulse Response based Identification Methods for First-Order Plus Time-Delay Model (1차 지연시간 모델의 펄스응답기반 식별방식에 대한 강인성 해석)

  • Jin, LiHua;Ryu, Ho-Sun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.83-85
    • /
    • 2007
  • A new approach on identifying a first-order plus time-delay (FOPTD) model using finite--duration pulse inputs has been presented recently [1]. The identification methods are very simple because it is enough to observe only two extremes and the time when they occur in the transient response to pulse input. However, when there is mismatch between actual system and FOPTD model. how sensitive the methods are has not been studied. In this paper, we investigate robustness issue of those identification algorithms in the presence of the model structure mismatch and uncertainties. Through an example we will demonstrate it.

  • PDF

RCGA-based PID control of unstable processes concerned with the constraints (제약조건을 고려한 불안정 시스템의 RCGA 기반 PID 제어)

  • Lee, Yun-Hyung;Yang, A-Young;So, Myung-Ok;Oh, Sea-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.85-90
    • /
    • 2013
  • PID control for unstable processes with time delay is not easy to apply because of unstability due to the poles existing on left-hand side in s-plane and the effect of time delay. In this paper, the authors consider the PID controller design technique in case of predefining overshoot or rising time by designer according to control environment. To deal with constraint problem like this, in this paper, the RCGA incorporating the penalty strategy is used. This is the method that if the RCGA violates given constraints, the defined penalty function is summed to the evaluation function depending on the severity and then the given constraint problem is converted to non-constraints optimization problem. The proposed method is applied to the unstable FOPTD(First Order Plus Time Delay) system and simulations are accomplished to illustrate the set-point tracking performance.

PID Control of Unstable Processes with Time Delay (시간지연을 갖는 불안정한 시스템의 PID 제어)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jung-Ki;Ryu, Ki-Tak;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.721-728
    • /
    • 2009
  • PID control is widely used to control stable processes, however, PID control for unstable processes is less common. In this paper, systematic tuning methods are derived to tune the PID controller for unstable FOPTD(Forst Order Plus Time Delay) processes. The proposed PID controllers for set-point tracking and disturbance rejection problem are tuned based on minimizing the performance indexes (IAE, ISE, ITAE) using a real-coded genetic algorithm. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.

PID controller design based on direct synthesis for set point speed control of gas turbine engine in warships (함정용 가스터빈 엔진의 속도 추종제어를 위한 DS 기반의 PID 제어기 설계)

  • Jong-Phil KIM;Ki-Tak RYU;Sang-Sik LEE;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Gas turbine engines are widely used as prime movers of generator and propulsion system in warships. This study addresses the problem of designing a DS-based PID controller for speed control of the LM-2500 gas turbine engine used for propulsion in warships. To this end, we first derive a dynamic model of the LM-2500 using actual sea trail data. Next, the PRC (process reaction curve) method is used to approximate the first-order plus time delay (FOPTD) model, and the DS-based PID controller design technique is proposed according to approximation of the time delay term. The proposed controller conducts set-point tracking simulation using MATLAB (2016b), and evaluates and compares the performance index with the existing control methods. As a result of simulation at each operating point, the proposed controller showed the smallest in %OS, which means that the rpm does not change rapidly. In addition, IAE and IAC were also the smallest, showing the best result in error performance and controller effort.

On-line process identification for cascade control system (Cascade 제어를 위한 실시간 공정 식별법)

  • 박흥일;성수환;이인범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1412-1415
    • /
    • 1996
  • In this paper, a new identification method of the cascade control system is proposed which can overcome the weak points of Krishnaswamy and Rangaiah(1987)'s method. This new method consists of two steps. One is on-line process identification using the numerical integration to approximate the two process dynamics with a high order linear transfer function. The other is a model reduction technique to derive out low order transfer function(FOPTD or SOPTD) from the obtained high order linear transfer function to tune the controller using usual tuning rules. While the proposed method preserves the advantages of the Krishnaswamy and Rangaiah(1987)'s method, it has such a simplicity that it requires only measured input and output data and simple least-squares technique. Simulation results show that the proposed method can be a promising alternative in the identification of cascade control systems.

  • PDF

A Study on the First Order Plus Time Delay Model Identification from Noisy Step Responses (노이즈가 있는 계단응답으로부터 일차시간지연모델 확인에 관한 연구)

  • Ju, Seungmin;Kim, Sung Jin;Byeon, Jeonguk;Chun, Daewoong;Sung, Su Whan;Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.949-957
    • /
    • 2008
  • Estimating the first order plus time delay model on the basis of the step responses has been widely used in industry for the tuning of PID controllers. Even though various model identification methods from simple graphical approaches to complicated approaches based on least squares method have been proposed, simple approaches to incorporate noisy step responses are rarely available. In this research, we will compare and analyze recent approaches using the integrals of the step responses and develop an improved identification method to incorporate real situations more effectively.

Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory (QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구)

  • Park, Inseok;Hong, Seungwoo;Shin, Jaewook;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.