• Title/Summary/Keyword: FOOT PRESSURE

Search Result 532, Processing Time 0.028 seconds

Effect of Weight-bearing Pattern and Calcaneal Taping on Heel Width and Plantar Pressure in Standing

  • Jung, DoYoung
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.1
    • /
    • pp.29-33
    • /
    • 2020
  • Purpose: This study examined the effects of the weight-bearing pattern and calcaneal taping on the heel width and plantar pressure in standing. Methods: Fifteen healthy subjects with normal feet participated in this study. The heel width was measured using a digital caliper, and a pedoscan was used to measure the plantar pressure of the rear foot while standing. The participants were instructed to stand in three weight-bearing patterns (anterior, middle, and posterior weight bearing) before and after calcaneal taping. The heel width and plantar pressure were measured three times before and three times after calcaneal taping, with the three weight-bearing patterns applied in random order. A 2 (non-taping vs. taping) × 3 (anterior, middle, posterior weight bearing) two-way repeated ANOVA with a Bonferroni post hoc correction was used to assess the differences in heel width and plantar pressure. Results: The results revealed a significant main effect of the weight-bearing pattern (p<.01), but not of calcaneal taping (p>.05). Greater weight bearing applied to the heel resulted in a significantly increased heel width and planter pressure of the rear foot (p<.01). Conclusion: In standing, a posterior weight-bearing pattern increases the heel width due to side-to-side shifting of the plantar heel pad, which increases the heel plantar pressure. Therefore, to prevent high stress on the heel pad and plantar heel pain, it is important to refrain from posterior weight bearing while standing during the activities of daily living.

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.

Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque (족저굴곡과 무릎 신전 토크를 이용한 보행 재활 훈련용 장하지 보조기 개발)

  • Kim, Kyung;Kim, Jae-Jun;Heo, Min;Jeong, Gu-Young;Ko, Myoung-Hwan;Kwon, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.948-956
    • /
    • 2010
  • The purpose of this study was to test the effectiveness of a prototype KAFO (Knee-Ankle-Foot Orthosis) powered by two artificial pneumatic muscles during walking. We had previously built powered AFO (Ankle-Foot Orthosis) and KO (Knee Orthosis) and used it effectively in studies on assistance of plantaflexion and knee extension motion. Extending the previous study to a KAFO presented additional challenges related to the assistance of gait motion for rehabilitation training. Five healthy males were performed gait motion on treadmill wearing KAFO equipped with artificial pneumatic muscles to power ankle plantaflexion and knee extension. Subjects walked on treadmill at 1.5 km/h under four conditions without extensive practice: 1) without wearing KAFO, 2) wearing KAFO with artificial muscles turned off, 3) wearing KAFO powered only in plantaflexion under feedforward control, and 4) wearing KAFO powered both in plantaflexion and knee extension under feedforward control. We collected surface electromyography, foot pressure and kinematics of ankle and knee joint. The experimental result showed that a muscular strength of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be lower due to pneumatic assistance and foot pressure of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be greater due to power assistance. In the result of motion analysis, the ankle angle of powered KAFO in terminal stance phase was found a peak value toward plantaflexion and there were difference of maximum knee flexion range among condition 2, 3 and 4 in mid-swing phase. The current orthosis design provided plantaflexion torque of ankle jonit in terminal stance phase and knee extension torque of knee joint in mid-swing phase.

Meta-Analysis of the Effectiveness on Foot-Reflexo-Massage for Cancer Patients (암환자에게 적용한 발반사 마사지 중재효과의 메타분석)

  • Kim, Min-Young;Oh, Pok-Ja
    • Asian Oncology Nursing
    • /
    • v.11 no.2
    • /
    • pp.127-135
    • /
    • 2011
  • Purpose: This study was performed to analyze the characteristics and effect sizes of intervention studies on foot-reflexo-massage applied to cancer patients. Methods: For meta-analysis, a total of 159 studies were retrieved from search engines such as RISS, nanet, KISS, richis and KoreaMed. 16 studies published from 1990 to 2010 were selected based on the inclusion criteria. The data were analyzed with the RevMan 5.0 program of Cochrane library. Results: 1) The mean score of 1 implement time on foot-reflexo-massage was 25.62 minutes, the average number of days was 4.12 days, and the total number of average intervention frequency was 4.25 times. 2) Intervention studies on foot-reflexo-massage included 9 studies on anxiety (56.3%), 7 for pain (43.8%), 5 for BP/pulse (31.3%), 5 for fatigue (31.3%), 3 for nausea/vomiting (18.8%), 3 for sleep satisfaction (18.8%), and 2 for depression (12.5%). 3) The effect sizes of the intervention studies that showed higher effect size were in order, anxiety (d=-1.76), fatigue (d=-1.43), depression (d=-1.03), nausea and vomiting (d=-0.83), pain (d=-0.77), pulse rate (d=-0.61), blood pressure (d=-0.55), and sleep satisfaction (d=0.43). Conclusion: This study suggests that foot-reflexo-massage can increase sleep satisfaction, whereas decreasing blood pressure, pulse rate, anxiety, fatigue, depression, nausea, vomiting and pain.

Skin Graft Remains a Clinically Good Treatment Strategy for Chronic Diabetic Wounds of the Foot and Ankle (피부이식술을 통한 만성 당뇨족 창상 치료의 효용성)

  • Kim, Yoon-Chung;Kim, Bo-Seoung;Jeong, Howon;Ahn, Jae Hoon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.2
    • /
    • pp.78-83
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate the surgical outcome of split-thickness skin graft (STSG) for chronic diabetic wounds of the foot and ankle. Materials and Methods: The medical records of 20 patients who underwent surgery for chronic diabetic wounds of the foot and ankle between October 2013 and May 2018 were reviewed. Surgical management consisted of consecutive debridement, followed by negative-pressure wound therapy and STSG. We used an acellular dermal matrix between the wound and the overlying STSG in some patients with wide or uneven wounds. Patient satisfaction, comorbidities, wound size and location, length of hospital stay, wound healing time, and complications were investigated. Results: Of 20 patients, 17 (85.0%) were satisfied with the surgical outcome. Eight patients had diabetic wounds associated with peripheral vascular disease (PVD), 7 patients had diabetic wounds without PVD, and 5 patients had acute infection superimposed with necrotizing abscesses. The mean size of the wound was 49.6 cm2. The mean length of hospital stay was 33.3 days. The mean time to wound healing was 7.9 weeks. The mean follow-up period was 25.9 months. Complications included delayed wound healing (4 cases) and recurrence of the diabetic wounds (2 cases), which were resolved by meticulous wound dressing. Conclusion: STSG remains a good treatment strategy for chronic diabetic wounds of the foot and ankle.

Comparative Analysis of Two Pedobarography Systems (두 족저압 측정장비의 비교 분석)

  • Ho Won Kang;Soomin Pyeun;Dae-Yoo Kim;Yun Jae Cho;Min Gyu Kyung;Dong Yeon Lee
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: Foot pressure measurement devices are used widely in clinical settings for plantar pressure assessments. Despite the availability of various devices, studies evaluating the inter-device reliability are limited. This study compared plantar pressure measurements obtained from HR Mat (Tekscan Inc.) and EMED-n50 (Novel GmbH). Materials and Methods: The study involved 38 healthy male volunteers. The participants were categorized into two groups based on the Meary's angle in standing foot lateral radiographs: those with normal feet (angles ranging from -4° to 4°) and those with mild flatfeet (angles from -8° to -15°). The static and dynamic plantar pressures of the participants were measured using HR Mat and EMED-n50. The reliability of the contact area and mean force was assessed using the interclass correlation coefficient (ICC). Furthermore, the differences in measurements between the two devices were examined, considering the presence of mild flatfoot. Results: The ICC values for the contact area and mean force ranged from 0.703 to 0.947, indicating good-to-excellent reliability across all areas. EMED-n50 tended to record higher contact areas than HR Mat. The mean force was significantly higher in the forefoot region when measured with EMED-n50, whereas, in the hindfoot region, this difference was observed only during static measurements with HR Mat. Participants with mild flatfeet exhibited significantly higher contact areas in the midfoot region for both devices, with no consistent differences in the other parameters. Conclusion: The contact area and mean force measurements of the HR Mat and EMED-n50 showed high reliability. On the other hand, EMED-n50 tended to record higher contact areas than HR Mat. In cases of mild flatfoot, an increase in contact area within the midfoot region was observed, but no consistent impact on the differences between the two devices was evident.

The Studies on the Foot Stability and Kinesiology by Direction of Carry a Load during Gait (보행 시 부하의 위치에 따른 발의 안정성 및 운동학적 분석에 관한 연구)

  • Lee, Sang-Yeol;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • Purpose: This study examined how the direction of carrying a load affects the foot stability and kinesiology while walking. Methods: The heel rotation, Hallux stiffness, foot balance, metatarsal load, toe out angle, subtalar joint flexibility were measured in 40 adults (men and women) who carried a load back and forth, walking on a 2-meter-long board. The measurement was carried out three times and the mean of the measurements was used to compare the difference between the front, back and the condition without a load. Results: While walking, heel rotation and hallux stiffness occurred most when a front load was applied compared to a back load or no load condition (p<0.05). A metatarsal load also appeared to be the highest with the frond load, but there was no significant difference in the balance of the whole foot. Both the toe out angle and subtalar joint flexibility appeared to increase significantly (p<0.05). Conclusion: Applying the front load causes subtalar joint instability and increases the plantar foot pressure imbalance during walking.

  • PDF

Effects of Foot Type and Ankle Joint Fatigue Levels on the Trajectories of COP and COM during a Single-Leg Stance (발의 유형과 발목 관절 피로 수준이 외발서기 시 압력중심점과 질량중심점 궤적에 미치는 영향)

  • Shin, Young-Hwa;Youm, Chang-Hong;Son, Min-Ji
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.335-345
    • /
    • 2013
  • The purpose of this study was to investigate the effects of foot type and ankle joint fatigue levels on the trajectories of center of pressure and center of mass during a single-leg stance. The study subjects included 24 healthy women (normal foot group, n=10; pronated foot group, n=14). Ankle joint muscle fatigue was induced by using an isokinetic dynamometer, where the fatigue levels were measured on plantar flexion and dorsiflexion at angular velocities of $30^{\circ}/s$ at 50% and 30% of the peak torque of ankle plantar flexion. Following assessments in the anteroposterior direction according to the level of fatigue, the pronated foot group showed decreased single-leg stance ability at 50% and 30% of the fatigue level. Moreover, the normal foot group showed better single-leg stance ability than the pronated foot group at 30% of the fatigue level. Following assessments in the mediolateral direction, we noted that the single-leg stance ability did not differ significantly according to the levels of fatigue or foot type. In conclusion, ankle plantar flexion at 50% and 30% of the peak torque reduced the ability of the pronated foot group to achieve a single leg stance in the anteroposterior direction. Moreover, the normal foot group showed better single-leg stance ability than the pronated foot group.

A Critical Review of Foot Orthoses in Normal and Diseased Foot (정상의 발과 병적인 발에서 발보조기 연구의 비판적 고찰)

  • Kim, Seung-Jae;Kim, Jang-Hwan;Tack, Gye-Rae;Bae, Sang-Woo;Park, Yeong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this study was to critically review biomechanical studies on foot orthoses (FO) in normal and diseased foot and provide beneficial information obtained from researches until now and future researching focus. The search was performed by Medline and Embase database including studies published in English from January 1980 to April 2007. The searching terms were foot orthoses, foot orthotics, insoles and shoe insert. 57 studies including 54 journal articles and 3 abstracts were finally selected under the conditions of having clinical trials, FO, control condition, movement, scientific measuring system. The reviewed studies were divided into 10 categories according to subject characteristics; healthy normal, excessive pronation or flexible flat foot, rheumatoid arthritis, diabetes, medial knee osteoarthritis, forefoot varus, plantar fasciitis, patellofemoral syndrome, cavus foot and finite element model. In summary, first, soft and semirigid FOs with some degree of cushioning showed much higher comfort and efficacy than rigid FO. Second, no big differences between prefabricated and custom FO were shown. Third, the full length's FO was preferable to the half length's FO or simple arch supports. Fourth, the wearing of FO combining medial arch supports and metatarsal dome made positive roles to enhance comfort and functionality and redistribute plantar pressure under the foot. Fifth, for patients with knee-related diseases lateral wedges were preferable. Sixth, measuring systems were properly applied according to the types of foot diseases.

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System (동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가)

  • Song, Seong Mi;Yu, Chang Ho;Kim, Kyung;Kim, Jae Jun;Song, Won Kyung;Hong, Chul Un;Kwon, Tae Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.