Browse > Article

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System  

Song, Seong Mi (전북대학교 헬스케어공학과)
Yu, Chang Ho (전북대학교 바이오메디컬공학부)
Kim, Kyung (사단법인 캠틱종합기술원)
Kim, Jae Jun (사단법인 캠틱종합기술원)
Song, Won Kyung (국립재활원 재활연구소)
Hong, Chul Un (전북대학교 바이오메디컬공학부)
Kwon, Tae Kyu (전북대학교 바이오메디컬공학부)
Publication Information
Journal of rehabilitation welfare engineering & assistive technology / v.10, no.1, 2016 , pp. 47-57 More about this Journal
Abstract
In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.
Keywords
Gait Rehabilitation Robot Rehabilitation; Body Weight Support; EMG; Foot Pressure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Hesse, C. Bertelt, M.T. Jahnke, A. Schaffrin, P. Baake, M. Malezic, K.H. Mauritz, "Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients", J. Stroke, vol. 26, pp. 76-981, 1995.
2 H. I. Kim, "A Study on the Gait Training System for the Rehabilitation of the Gait Disorder Patients", Doctorate thesis, Chosun University, 2010.
3 B. K. Lee, K. J. Chun, D. H. Lim, "Feasibility of New Moving System integrated with Exoskeleton for Gait Rehabilitation", The Korean Society of Mechanical Engineers Conference, Republic of Korea, pp. 3895-3899, Dec, 2013.
4 P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. V. Loos, "Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke", J. Arch. Phys. Med. Rehabil., vol. 83, pp. 952-959, 2002.   DOI
5 S. K. Banala, S. H. Kim, S. K. Agrawal and J. P. Scholz, "Robot Assisted Gait Training With Active Leg Exoskeleton", Transactions on Neural System and rehabilitation Engineering, vol. 17, no. 1, pp. 2-8, 2009.   DOI
6 L. Lunenburger, G. Colombo and R. Riener, " Biofeedback for robotic gait rehabilitation", J. NeuroEngineering and Rehabilitation, vol. 4, no. 1, 1743-0003(ISSN), 2007.
7 B. Husemann, F. Muller, C. Krewer, S. Heller, and E. Koenig, "Effect of Locomotion Training With Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients After Stroke", J. Stroke, vol. 38, pp. 349-354, 2007.   DOI
8 J. F. Veneman, R. Kruidhof, E. G. Hekman, R. Ekkelenkamp, E.V. Asseledonk, and H. Kooij, "Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation", Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 379-386, 2007.   DOI
9 D.T. Wade, V.A. Wood, A. Heller, "Walking after stroke: measurement and recovery over the first three months", Scandinavian J. Rehabilitation medicine, vol. 19, no. 25-30, pp. 25-30, 1987.
10 K. Bharadwaj, T. G. Sugar, J. B. Koeneman and E.J. Koeneman, "Design of Robotic Gait Trainer using Spring Over Muscle Actuators for Ankle Stroke Rehbilitation", J.Biomech Eng, vol. 127, no. 6, pp. 1009-1013, 2005.   DOI
11 M. Bouri, Y. Stauffer, C. Schmitt, Y. Aallcmand, S. Gncmmi, and R. Clavel, "The WalkTrainer : A Robotic System for Walking Rehabilitation", International Conference on Robotics and Biomimetics, pp. 1616-1621, 2006.
12 Y. Stauffer, Y. Allemand, M. Bouri, J. Fournier, R. Clavel, P. Metrailler, R. Brodard, and F. Reynard, "The WalkerTrainer-A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation", IEEE Transactions on Neural System and Rehabilitation Engineering, vol. 17, no. 1, pp. 38-45, 2009.   DOI
13 M. Patrick, B. Roland, S. Yves, C. Reymond, and F. Rolf, "Cyberthosis; Rehabilitation robotics with controlled electrical muscle stimulation", J. Rehabilitation Robotics, No.LSRO-CHAPTER, pp. 303-317, 2007.
14 S. M. Song, C. H. Yu, K. Kim, J. J. Kim, J. N. Kim, W. K. Song, T. K. Kwon, "Preliminary Study on Pattern of Daily Activities related to Lower Extremities for the Body-Weight Support System", The Korean Society of Medical & Biological Engineering Spring Conference, pp. 71, 2015.
15 Y. H. Choi, "The Analysis of Balance and muscle Activity according to Stair Height Gait Training in Adult Hemiplegia", Master's thesis, Daegu University, 2012.
16 S. H. Kim, J. H. Ryu, D. H. Kim, "Gait phase classification for Stair walking using Feature Extraction and Muscle selection based on EMG Signals", IEIE Summer Conference, Republic of Korea, vol. 37, no.1, pp. 1053-1056, 2014.
17 M. J. Hessert, M. Vyas, J. Leach, K. Hu, L. A. Lipstiz and V. Novak, "Foot Pressure distribution during walking in young and old adults", BMC Geriatrics, vol. 5, 2005.
18 G. J. Jerome, S. U. Ko, D. K. Kauffman, S. A. Studenski, L. Ferrucci, and E. M. Simonsick, "Gait characteristics associated with walking speed decline in older adults: Results from the Baltimore Longitudinal Study of Aging", J. Archives of Gerontoloty and Geriatrics, vol. 60, pp. 239-243, 2015.   DOI
19 G. Bovi, M.Rabuffetti, P. Mazzoleni, M. Ferrarin, " A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects", Gate & Posture, vol. 33, pp. 6-13, 2011.   DOI
20 Y. Okita, N. Tatematsu, K. Nagai, T. Nakayama, T. Nakayamata, T. Okamoto, J. Toguchida, N. Ichihashi, S. Matsuda, and T. Tsuboyama, "The effect of walking speed on gait kinematics and kinetics after endoprosthetic knee replacement following bone tumor resection", Gait & Posture, vol. 40, pp. 622-627, 2014.   DOI