• Title/Summary/Keyword: FMEA

Search Result 307, Processing Time 0.028 seconds

Reliability Management of Mechanical Ventilator in Intensive Care Unit Using FMEA Based on ISO14971 (ISO14971 기반 FMEA를 이용한 중환자실내 인공호흡기 신뢰성 관리)

  • Hyun Joon, Kim;Won Kyu, Kim;Tae Jong, Kim;Gee Young, Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Due to the spread of COVID-19, many patients with severe respiratory diseases have occurred worldwide, and accordingly, the use of mechanical ventilators has exploded. However, hospitals do not have systematic risk management, and the Medical Device Regulation also provides medical device risk management standards for manufacturers, but does not apply to devices in use. In this paper, we applied the Failure Mode Effects Analysis (FMEA) risk analysis technique based on the International Standard ISO 14971 (Medical Devices-Application of risk management to medical devices) for 85 mechanical ventilators of a specific model in use in hospitals. Failure modes and effects of each parts were investigated, and risk priority was derived through multiplication of each score by preparing criteria for severity, occurrence, and detection for each failure mode. As a result, it was confirmed that the microprocessor-based Patient Unit/Monitoring board in charge of monitoring scored the highest score with 36 points, and that reliability management is possible through systematic risk management according to priority.

Standard Process Design of Remanufacturing of LPG Vaporizer by using FMEA (FMEA를 이용한 LPG 기화기의 재제조 표준공정 설계)

  • Mok, Hak-Soo;Song, Hyun-Su;Kim, Deuk-Jung;Hong, Jin-Eui;Lee, Seung-Min;Ahn, Jung-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.54-62
    • /
    • 2014
  • This paper present a improved process for remanufacturing of LPG vaporizer through Failure Mode and Effect Analysis(FMEA). Based on the failure causes analysis and classification of faults that occur after the initial failure of LPG vaporizer remanufacturing, suggests improvements for high R.P.N. Derive the improvement for higher cumulative frequency of each process, proposes the overall improvement of a current process for establish a standard LPG remanufacturing process.

Fuzzy Based Failure Mode and Effect Analysis (FMEA) of Hydrogen Production Process Using the Thermococcus Onnurineus NA1 (퍼지기반 해양 미생물 이용 수소 제조 공정의 고장유형 및 영향분석)

  • PARK, SUNG HO;AHN, JUNKEON;KIM, SU HYUN;YOO, YOUNG DON;CHANG, DAEJUN;KANG, SUNGKYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.307-316
    • /
    • 2018
  • In this study, the failure mode and effect analysis (FMEA) of hydrogen production process by using the Thermococcus onnurineus NA1 was conducted and advanced methodology to compensate the weakness of previous FMEA methodology was applied. To bring out more quantitative and precise FMEA result for bio-hydrogen production process, fuzzy logic and potential loss cost estimated from ASPEN Capital Cost Estimator (ACCE) was introduced. Consequently, risk for releasing the flammable gases via internal leakage of steam tube which to control the operating temperature of main reactor was caution status in FMEA result without applying the fuzzification and ACCE. Moreover, probability of the steam tube plugging caused by solid property like medium was still caution status. As to apply the fuzzy logic and potential loss cost estimated from ACCE, a couple of caution status was unexpectedly upgraded to high dangerous status since the potential loss cost of steam tube for main reactor and decrease in product gases are higher than expected.

Semiquantitative Failure Mode, Effect and Criticality Analysis for Reliability Analysis of Solid Rocket Propulsion System (고체 로켓 추진 기관의 신뢰성 분석을 위한 준-정량적 FMECA)

  • Moon, Keun Hwan;Kim, Jin Kon;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.631-638
    • /
    • 2015
  • In this study, semiquantitative failure mode, effects, and criticality analysis (FMECA) for the reliability analysis of a solid rocket propulsion system is performed. The semiquantitative FMECA is composed of failure mode and effects analysis (FMEA) and criticality analysis (CA). To perform FMECA, the structure of the solid rocket propulsion system is divided into 43 parts down to the component level, and FMEA is conducted at the design stage considering 137 potential failure modes. CA is then conducted for each failure mode, during which the criticality number is estimated using the failure rate databases. The results demonstrate the relationship between potential failure modes, causes, and effects, and their risk priorities are evaluated qualitatively. Additionally, several failure modes with higher criticality and severity values are selected for high-priority improvement.

On the Development of an FMEA Method for Automotive Safety Utilizing Design Traceability (자동차 안전성 설계에서 설계 추적성을 활용한 고장형태 영향분석에 관한 연구)

  • Lim, Gwan-Taik;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In modern systems design and development, one of the key issues is considered to be related with how to reflect faithfully the stakeholder requirements including customer requirements therein, thereby successfully implementing the system functions derived from the requirements. On the other hand, the issue of safety management is also becoming greatly important these days, particularly in the operational phase of the systems under development. An approach to safety management can be based on the use of the failure mode effect and analysis (FMEA), which has been a core method adopted in automotive industry to reduce the potential failure. The fact that a successful development of cars needs to consider both the complexity and failure throughout the whole life cycle calls for the necessity of applying the systems engineering (SE) process. To meet such a need, in this paper a method of FMEA is developed based on the SE concept. To do so, a process model is derived first in order to identify the required activities that must be satisfied in automotive design while reducing the possibility of failure. Specifically, the stakeholder requirements were analyzed first to derive a set of functions, which subsequentially leads to the task of identifying necessary HW/SW components. Then the derived functions were allocated to appropriate HW/SW components. During this design process, the traceability between the functions and HW/SW components were generated. The traceability can play a key role when FMEA is performed to predict the potential failure that can be described with the routes from the components through the linked functions. As a case study, the developed process model has been applied in a project carried out in practice. The results turned out to demonstrate the usefulness of the approach.

An Integrative Method of FTA and FMEA for Software Security Analysis of a Smart Phone (스마트 폰의 소프트웨어 보안성 분석을 위한 FTA와 FMEA의 통합적 방법)

  • Kim, Myong-Hee;Toyib, Wildan;Park, Man-Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.12
    • /
    • pp.541-552
    • /
    • 2013
  • Recently software security of the smart phone is an important issue in the field of information science and technology due to fast propagation of smart technology in our life. The smart phone as the security critical systems which are utilizing in terminal systems of the banking, ubiquitous home management, airline passengers screening, and so on are related to the risk of costs, risk of loss, risk of availability, and risk by usage. For the security issues, software hazard analysis of smart phone is the key approaching method by use of observed failures. In this paper, we propose an efficient integrative framework for software security analysis of the smart phone using Fault Tree Analysis (FTA) and Failure Mode Effect Analysis (FMEA) to gain a convergence security and reliability analysis technique on hand handle devices. And we discuss about that if a failure mode effect analysis performs simpler, not only for improving security but also reducing failure effects on this smart device, the proposed integrative framework is a key solution.

A Study on Product Liability Response System of Chemical Products by Using Failure Mode and Effect Analysis (FMEA기법을 이용한 화학제품의 PL 대응체계 연구)

  • Ko J. W.;Yoo J. H.;Kim D. H
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.30-35
    • /
    • 2003
  • Product liability(PL) law imposes the liability on manufacturer or wholesaler when the product defects cause harm to consumers of the products or any other parties in their lives, bodies, or properties. In Korea, the law of product liability was enforced in July 2002. In this study the Product Liability Response System of chemical products was developed by using Failure Mode and Effect Analysis(FMEA). For a case study peformed for N,N-Dimethylethylamine. First, product information was gathered through Material Safety Data Sheet(MSDS)and which considered as an instruction manual of chemical product. And an effect caused by product defects is analyzed by FMEA to get Risk Priority Number(RPN) which is calculated by multiplying of severity, occurrence, and detection of the defects. Then hazard was estimated quantitatively by RPN.

  • PDF

An Experimental Study on the FMEA Evaluation of Non-metallic Materials in High-Pressure Hydrogen Facility (고압 수소설비용 비금속부품 소재의 FMEA 평가를 통한 실험적 연구)

  • Ahn, Jeongjin;Kim, Wanjin;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2019
  • According to South Korea's policy of supplying eco-friendly hydrogen vehicles, related industries are actively conducting research on the development of hydrogen cars and hydrogen charging station infrastructure. On the other hand, there is a lack of empirical research and assessment of the risk of non-metallic materials (such as liners, seals, gaskets) for classified materials that directly affect the durability and reliability of hydrogen vehicles and hydrogen charging stations. In this study, the risk factors for liners and seals of non-metallic parts used in high-pressure hydrogen installations were derived using FMEA, and the RPN values were calculated by converting the severity, frequency of occurrence and degree of detection into scores. The maximum value of the RPN 600, minimum value 63, average value 278.5 was calculated and periodic control of the liner and seal was identified as important. In addition, through hydrogen soakage and oxygen aging tests for non-metallic rubber products, physical test values that can be used as basic data were presented.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

Identification of Claim Elements for Design Build Projects using FMEA Method (FMEA 기법을 이용한 설계시공일괄방식 주요 클레임 요인 도출)

  • Yoon, Seokmin;Hyun, Changtaek;Han, Sangwon;Cha, Yongwoon
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.26-33
    • /
    • 2015
  • Design-build projects were devised to enhance the design technologies of the domestic construction industry and the efficiency of public works, contributing greatly to the development of construction technologies. However, as various stages of the process, such as formulation of basic plans and design documents, and deliberations proceed, claims, including changes in the requirements of clients, and design changes occur. These claims result in the delay in construction and an increase in construction costs. In this regard, this study attempted to identify main claims that delay construction and increase the costs of design-build projects, prevent claims in the future, and improve the efficiency of project implementation.