• Title/Summary/Keyword: FMCW

Search Result 185, Processing Time 0.027 seconds

Design of an AM Radar Module with Improved Range Accuracy (거리 측정 정확도를 개선한 AM 레이더 모듈 설계)

  • Choi, Mun-Gak;Woo, Dong-Sik;Kang, Il-Heung;No, Hyung-Woo;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.911-918
    • /
    • 2010
  • With limitation of frequency bandwidth, the range accuracy of typical radars is limited. In this paper, for short distance measurements, the use of an AM(Amplitude Modulated) radar which provides improved range accuracy is proposed. The AM radar signal consists of a carrier frequency signal and double-sideband components. The fabricated AM radar operates with +10 dBm output power and 35 dB receiver gain at 24.128 GHz center frequency with 20 MHz bandwidth, and the range accuracy is measured as ${\pm}15\;cm$.

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

Method for Recognition and Generation of High Precision Range Delay in High Range Resolution Pulse Radar (고해상도 펄스 레이더에서 고정밀 거리 지연 인식 및 생성 방법)

  • Hong, Young-Gon;Kim, Sang-Ho;Kim, Yoon-Jin;Woo, Soen-Koel;Lee, Man-Hee;Ahn, Se-Hwan;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • We discuss the method of a high precision range trigger and generation for a high range resolution radar. To verify the designed range resolution performance, we use test-equipments which can absolutely make a precision range shorter than the desined range resolution. The accuracy of generated range is proportional to the system reference clock. However, the system main processor is limited to input reference clocks and a higher available one is expensive in the conventional method. To solve this problem, we proposed that the range trigger and generation method using multi-phase-shiftings and integration. Through a experiment, we verified that the proposed method made problems which can be ocurred in the conventional method clear.

65 nm CMOS Base Band Filter for 77 GHz Automotive Radar Compensating Path Loss Difference (경로 손실 변화의 보상이 가능한 77 GHz 차량용 레이더 시스템을 위한 65 nm CMOS 베이스밴드 필터)

  • Kim, Young-Sik;Lee, Seung-Jun;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1151-1156
    • /
    • 2012
  • In this paper, the baseband filter is proposed in order to maintain a constant sensitivity regardless of distances for 77 GHz automotive radar system. Using existing DCOC loop circuit can remove DC offset and also cancel differences of received power depending on the distance. Measured results show that the maximum gain is 51 dB and high pass cutoff frequency can be tuned from 5 kHz to 15 kHz. The slope of high pass filter can be tuned from -10 to -40 dB/decade for the distance compensation. The measured NF and IIP3 are 26 dB and +4.5 dBm with 4.3 mA at 1.0 V supply voltage, respectively. The fabricated die size $500{\mu}m{\times}1,050{\mu}m$ excluding the in/out pads.

Study on the Compact K-Band Radar for Detecting the Approaching Target above Ground (지상 접근 표적 감지를 위한 초소형 K-대역 레이다 연구)

  • Ha, Jong-Soo;Roh, Jin-Eep;Choi, Jae-Hyun;Lee, Han-Jin;Park, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.309-317
    • /
    • 2017
  • This paper proposes a compact K-band radar applied to a miniature proximity fuze for the active defense system. In this terrestrial environment, it is not easy to detect approaching small targets because the clutter is scattered. In addition, it is difficult to miniaturize the radar for the small proximity fuze while improving the target accuracy of the radar in such environments. To solve these difficulties, this study presents system analysis and design, antenna design, and transceiver and signal processor design of the compact K-band radar. Some test results are presented and the results are analyzed, the validity of the proposed study is examined.

Design of 77 GHz Radar Transmitter Using 13 GHz CMOS Frequency Synthesizer and Multiplier (13 GHz CMOS 주파수 합성기와 체배기를 이용한 77 GHz 레이더 송신기 설계)

  • Song, Ui-Jong;Kang, Hyun-Sang;Choi, Kyu-Jin;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1297-1306
    • /
    • 2012
  • This work presents a 77 GHz radar transmitter for the automotive radar system. An integrated 13 GHz frequency synthesizer fabricated using 130 nm RF CMOS process drives a commercial W-band compound semiconductor monolithic multifunction amplifier(MPA), which includes a frequency multiplier by six to generate 77 GHz transmitting signal. The 13 GHz frequency synthesizer includes a high efficiency injection buffer of 4 dBm output power to drive the MPA. The output power of 77 GHz radar transmitter is higher than 13.99 dBm and the magnitude of the reference spur relative to the carrier is -36.45 dBc. The phase noise is -81 dBc/Hz at 1 MHz offset frequency from the carrier.

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

A Study on Estimation of Beat Frequency in a Water Level Measurement Radar (수위 측정 레이다에서의 비트 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1791-1797
    • /
    • 2014
  • A water level measurement radar estimates beat frequencies to extract the corresponding water level information for water resource management. Therefore, it is required to maintain the high degree of reliability and accuracy in beat frequency estimates. However, Beat spectra of water surface return echoes can have very widely varying shapes according to system frequency linearity, measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of the conventional level estimation method. Therefore, in this paper, high resolution spectrum estimates are analyzed for improvement of the conventional method. These methods show that the more accurate level measurement can be possible on the condition that SNR is higher than a certain required threshold. However, if SNR is too low, the conventional method shows that estimates are more reliable than the suggested method though absolute errors are too large.

Distance Sensing of Moving Target with Frequency Control of 2.4 GHz Doppler Radar (2.4 GHz 도플러 레이다의 주파수 조정을 통한 이동체 거리 센싱)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • In general, a Doppler radar can measure only the velocity of a moving target. To measure the distance of a moving target, it is necessary to use a frequency-modulated continuous wave or pulse radar. However, the latter are very complex in terms of both hardware as well as signal processing. Moreover, the requirement of wide bandwidth necessitates the use of millimeter-wave frequency bands of 24 GHz and 77 GHz. Recently, a new kind of Doppler radar using multitone frequency has been studied to sense the distance of moving targets in addition to their speed. In this study, we show that distance sensing of moving targets is possible by adjusting only the frequency of a 2.4 GHz Doppler radar with low cost phase lock loop. In particular, we show that distance can be sensed using only alternating current information without direct current offset information. The proposed technology satisfies the Korean local standard for low power radio equipment for moving target identification in the 2.4 GHz frequency band, and enables multiple long-range sensing and radio-frequency identification applications.

A Study on the Time Delay Compensate Algorithm in Uniform Linear Array Antenna on Radar System (레이더시스템의 등 간격 선형 배열 안테나에서 시간 지연 보상 알고리즘 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.434-439
    • /
    • 2019
  • This paper proposed a control algorithm to compensate the delay time to improve the signal to noise, and the proposed control algorithm estimate the target information to apply the continuous wave radar equation. The proposed control algorithm improves the output signal of each array element bv multiplying the weight of the receive signal to the signal to noise ratio. Radar radiate a signal in spatial and the target information is estimated by the echoed signal from the target. But the signal in the wireless communication environment occurs the delay time due to the multipath which appear human and natural structures. It is difficult to accurately estimate the desired information because of the degradation for the system performance due to the interference signal and the signal distortion. The target information can be improved by compensating the delay signal to apply the weight to the received signal by using the uniform linear array antenna. As a simulation result, we show that the performance of the proposed control algorithm and the non-compensated delay time are compared. The proposed control algorithm proved that the target distance estimation information is improved.