• Title/Summary/Keyword: FLIR(Forward Looking InfraRed)

Search Result 6, Processing Time 0.022 seconds

Target extraction using divergent-direction-emphasis symmetry transform (발산 방향성 강조 대칭변환을 이용한 표적 검출)

  • Jun, Jun-Hyung;Lee, Hee-Yul;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.665-671
    • /
    • 2010
  • This paper propose the DDEGST(divergent-direction-emphasis generalized symmetry transform) which emphasis the symmetry of divergent intensity orientation for effective target extraction in FLIR(forward looking infra-red) images. In the proposed method, we use the exponential function instead of cosine function as a phase weight function in the generalized symmetry transform for effective target extraction in FLIR images which contain a target with higher intensity than a background intensity. To evaluate the performance of the proposed method, we compare the proposed mehtod with conventional GST method in experiments. We prove that the proposed method have better performance in IR images.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

Installation Design of FLIR Sensor Considering Dynamic Characteristics of Helicopter Airframe (헬리콥터 동적 특성을 고려한 FLIR 센서 장착 설계)

  • Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Forcing at the rotor blade passing frequencies is responsible for the majority of vibration related problems on helicopters. Blade passing frequencies of helicopters are generally in the range 10~30 Hz and the interest modes of the helicopters also exist in the range. By the way, the installation of a heavy sensor at the front extremities of an imported helicopter may change the modal characteristics of the airframe and results in the resonance with rotor passing frequencies. To avoid too large a change in the dynamics of the overall airframe, we determined how to install a heavy sensor through conceptual approach and finite element analysis. The results of a ground vibration test for airframe with sensor mount system clearly demonstrate that the installation design is acceptable dynamically.

Efficient Preprocessing Method for Binary Centroid Tracker in Cluttered Image Sequences (복잡한 배경영상에서 효과적인 전처리 방법을 이용한 표적 중심 추적기)

  • Cho, Jae-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.48-56
    • /
    • 2006
  • This paper proposes an efficient preprocessing technique for a binary centroid tracker in correlated image sequences. It is known that the following factors determine the performance of the binary centroid target tracker: (1) an efficient real-time preprocessing technique, (2) an exact target segmentation from cluttered background images and (3) an intelligent tracking window sizing, and etc. The proposed centroid tracker consists of an adaptive segmentation method based on novel distance features and an efficient real-time preprocessing technique in order to enhance the distinction between the objects of interest and their local background. Various tracking experiments using synthetic images as well as real Forward-Looking InfraRed (FLIR) images are performed to show the usefulness of the proposed methods.

  • PDF

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

Design and fabrication of a zoom optics having 20 magnification range for mid-IR(3.7-4.8$\mu$m) FLIR system (3.7-4.8$\mu$m 파장대역 FLIR 시스템을 위한 20:1 줌 렌즈 광학계 설계 및 제작)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.462-467
    • /
    • 1999
  • This paper describes the design and fabrication of mid-IR $(3.7-4.8{\mu}m)$ zoom optics which is used for FUR (Forward Looking Infra-Red) system with 320 $\times$ 240 focal plane arrays. The zoom optics has 20 magnification range and maximun 40$^{\circ}$$\times$30$^{\circ}$ of super wide field of view. The locus of zoom is almost linear, which gives easy access of mechanical and electro-mechanical design. The on-axis MTF of zoom optics has been measured and it shows diffraction limited optical performance. For example, it gives 0.692 at 24 cycles/mm at highest magnification, and 7.6 cycles/mradof resolving power is achieved with the operation of attached micro-scanning system.system.

  • PDF