• Title/Summary/Keyword: FKP-RTK

Search Result 11, Processing Time 0.031 seconds

Performance Comparison of VRS and FKP Network RTK User According to Baseline Length (기선 거리에 따른 VRS와 FKP 방식의 Network RTK 사용자 성능 비교)

  • Lim, Cheolsoon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.540-548
    • /
    • 2020
  • In this paper, the performances of virtual reference station (VRS) and flächen korrektur parameter (FKP) based Network real time kinematics (RTK) according to baseline length were compared and analyzed. We applied the VRS and FKP corrections for each baseline length obtained from National Geographic Information Institute Network RTK services to an FKP-supported commercial receiver and analyzed the RTK results in the range and position domains. In the case of VRS, RTK performance was degraded due to the spatial error, which increase in proportion of the baseline length. On the other hand, FKP compensates for spatial errors by using the gradients of dispersive and non-dispersive errors, so it showed stable RTK performance compared to VRS even if the baseline length increases up to 130 km. However, in the case of long baseline of 150 km or more, integer ambiguities were incorrectly fixed due to the decrease in the performance of the FKP corrections.

The Utilization Analysis of FKP Network RTK for Site Surveying (현황측량을 위한 FKP Network RTK의 활용성 분석)

  • Han, Seung-Hee;Park, Hong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2443-2449
    • /
    • 2014
  • The recent increase in the number of network RTK users has led to a longer wait time for connecting to the existing VRS service, and consequently caused inconvenience such as a longer turnaround time for surveys. To resolve such issue, the NGII has developed the FKP service that involves a one-way communication. However, it is not spreading across the market as fast as anticipated, due to accuracy problems in the field. This study uses eight unified control points for a reliability assessment to compare and analyze the survey results obtained through the VRS and FKP services in various ways. The analysis reveals that the standard deviation of the FKP service is ${\pm}0.02m$, which is two times larger than that of the VRS, whilst its standard errors are X:-0.025m and Y:0.011m, proving that it is reliable to be used in the field. Therefore, we expect that the FKP service is going to be more broadly utilized for field surveys in the future.

Availability Evaluation of FKP-RTK Positioning for Construction Survey Application (FKP-RTK 측위의 시공측량 적용성 실험)

  • Kim, In Seup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.463-469
    • /
    • 2013
  • In addition to the VRS-RTK service, FKP-RTK service launched recently in Korea however unlike VRS, it is not yet applied to various surveying tasks. VRS system is operated in two way communication over the mobile Internet. When user send rover position data to network RTK server and the server provides correction data to users continuously. It causes to increase communications load and makes delaying or failure in data transmission depends on server capacity and number of concurrent users. In contrast, since FKP system is one way communication system, user only receives correction data and area correction parameters for the selected Continuous Reference Station from the server. Thus, there is no limitation to the number of concurrent users in FKP system and it would be more efficient than VRS system in terms of economic. To this end, we performed FKP-RTK test for Unified Control Points and Urban Control Points where are located at 5 regions in Korea to evaluate the accuracy. As a result, almost of FKP positioning data are in error range of ${\pm}6.2cm$ in horizontal and it would be enough for construction survey such as for earth work in limited except precise structure survey.

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.

Stability Assessment of FKP System by NGII using Long-term Analysis of NTRIP Correction Signal (NTRIP 보정신호 분석을 통한 국토지리정보원 FKP NRTK 시스템 안정성 평가)

  • Kim, Min-Ho;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.321-329
    • /
    • 2013
  • Despite the advantage of unlimited access, there are insufficient studies for the accuracy and stability of FKP that blocks the spread of the system for various applications. Therefore, we performed a long-term analysis from continuous real-time positioning, and investigated the error characteristics dependent on the size and the surrounding environment. The FKP shows significant changes in the positioning accuracy at different times of day, where the accuracy during daytime is worse than that of nighttime. In addition, the size and deviation of FKP correction may change with the ionospheric conditions, and high correlation between ambiguity resolution rate and the deviation of correction was observed. The receivers continuously request the correction information in order to cope with sudden variability of ionosphere. On the other hand, the correction information was not received up to an hour in case of stable ionospheric condition. It is noteworthy that the outliers of FKP are clustered in their position with some biases. Since several meters of errors can be occurred for kinematic positioning with FKP, therefore, it is necessary to make appropriate preparation for real-time applications.

FKP and VRS among Network RTK GNSS methods Accuracy Evaluation of Observation Methods (Network RTK GNSS방법 중 FKP와 VRS 관측 방법의 정확도 평가)

  • Jae-Woo, KIM;Do-Yeoul, MUN;Yeong-Jong, KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • Providing real-time location information is emerging as a major goal of the national industry. In order to provide such real-time location information (3D spatial information), it is essential to develop a technology for a satellite positioning method. Therefore, the country continues to make efforts to increase satisfaction with the needs of consumers by introducing the Network RTK GNSS method. In this study, among the Network RKT GNSS(Global Navigation Satellite System) methods provided by the National Geographic Information Service, continuous observation and single observation were measured at the integrated reference point using VRS(Virtual Reference Station) and FKP(Flӓachen-Korrektur Parameter) to evaluate accuracy. In addition, we aim to maximize efficiency by presenting accuracy on the rapidly increasing Network RTK GNSS method in the field.

Accuracy Analysis of FKP for Public Surveying and Cadastral Resurvey (공공측량 및 지적재조사 사업 적용을 위한 FKP 정밀도 분석)

  • Park, Jin Sol;Han, Joong-Hee;Kwon, Jay Hyoun;Shin, Han Sup
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.23-24
    • /
    • 2014
  • NGII (National Geographic Information Institute) has been providing VRS (Virtual Reference Station) service so that could determine precise positioning in real time since 2007. However, since the VRS service has to maintain the connected status with VRS server, the number of users who can use VRS service are limited by capacity of VRS server. To solve this problem, NGII has been providing FKP (Virtual Reference Station) service using one way telecommunication from November 1, 2012. Therefore, it is predicted that the usage of FKP service will increase in public surveying and cadastral resurveying in the future. However, the studies with respect to analysis of FKP precision for applying to public surveying and cadastral resurveying is not conducted enough. In this study, to analyse the application possibility of FKP on the public surveying and cadastral resurveying, the two kind analysis were performed. First is the analysis of accuracy according to the configuration of reference station of FKP and VRS. One is consisted of same reference stations, another is consisted of different reference stations. Second is the accuracy anlalysis of horizontal and vertical positioning acquiring VRS and FKP data in various measurement environment based on VRS regulation. Result of first study, Positioning accuracy according to the configuration of the reference stations satisfies related regulation. However, accuracy of FKP in case of different reference stations is worse than in case of same reference stations.. The result of second test shows that the horizontal precision of FKP and VRS in good measurement environment satisfy the allowed precision. However, in some case, horizontal precision of FKP and VRS in poor measurement environment exceed the allowed precision. In addition, the number of exceeding the allowed precision in the FKP is more than the VRS. The vertical precision of the VRS satisfy related work provision. In conclusion, the result of this study shows that the FKP only in open area should be used for public survey and cadastral resurvey. Therefore the additional studies with respect to the improvement of FKP precision should be conducted.

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

Accuracy Evaluation of the Height Determined by Network-RTK VRS Positioning (네트워크 RTK VRS 측량에 의한 표고정확도 평가)

  • Lee, Suk Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • Network-RTK GPS positioning technique based on national CORS(Continuous Operating Reference Station) and wireless internet access as like VRS and FKP was developed to overcome the limitations of traditional RTK technique. In Korea, NGII(National Geographic Information Institute) provides network-RTK service based on 51 CORS and mobile internet network. The purpose of this study is the accuracy evaluation of the height determined by GPS VRS technique based on network-RTK, So, in this study GPS VRS positioning was accomplished through 1st level BM line located at Sancheong~Jinju and $2^{nd}$ level BM line located at Geochang~Sancheong and the average error of the each BM line was calculated as 2.15cm and 1.80cm respectively. This result shows that GPS VRS height positioning can be used in $3^{rd}$ and 4th public BM leveling and also work regulation is needed to apply the GPS VRS height positioning.

Prediction on the Performance Variation by the Rover Position of the One-way Network RTK (사용자 위치별 단방향 Network RTK 측위 성능 예측)

  • Park, Byungwoon;Wang, Namkyong;Kee, Changdon;Park, Heungwon;Seo, Seungwoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.107-108
    • /
    • 2014
  • As the demand for precise navigation has increased, more focus is put on the precise positioning, RTK(Real Time Kinematics) which has been used in the surveying field. The Position of Single Reference Station RTK or two-way network RTK such as VRS (Virtual Reference Station) is accurate enough to be used as a main technology in land surveying, however its service area and number of users is limited and the users are assumed static. This characteristic is not suitable to the navigation, whose service target is infinite number of users moving over a wide area. One-way network RTK has recently been suggested as a solution for the precise navigation technique for the mobile user. This paper shows the performance prediction of the one-way network RTK such as MAC(Master-Auxiliary Concept), or FKP (Flachenkorrekturparameter). To show the performance variation by the rover position, we constructed a simulation data of users on the grid with 0.1 degree spacing between 36.5 and 37 degree latitude and between 127 and 127.5 degree longitude.

  • PDF