• Title/Summary/Keyword: FGF-7

Search Result 85, Processing Time 0.018 seconds

THE EXPRESSION OF FGF-5 AND FGF-7 IN THE CYCLOSPORIN A-INDUCED GINGIVAL HYPERPLASIA (Cyclosporin A에 의한 치은 증식증에서 FGF-5와 FGF-7의 발현 양상에 대한 연구)

  • Jeong, Mi-Hyang;Kim, Seong-Gon;Yun, Kyoung-In;Nahm, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • Cyclosporin A-induced gingival hyperplasia is frequently found in the patients who have been received an immunosuppressant for the organ transplantation. However, its exact mechanism is still unknown. The expression of FGF-5 and FGF-7 were studied in cyclosporine A-induced gingival hyperplasia (CGH) and inflammatory gingival hyperplasia (IGH). Immunohistochemistry and in situ hybridization were used for localization of protein and mRNA. The expression of FGF-5 and FGF-7 was different from CGH and IGH. FGF-5 and FGF-7 was strongly expressed in fibroblast in CGH (P<0.005 and P<0.05, respectively). FGF-5 mRNA was localized in the middle portion of connective tissue. FGF-7 mRNA was also identified in fibroblasts and mast cells. In conclusion, FGF-5 and FGF-7 were produced excessively by fibroblasts in CGH. Considering their known functions, their expression in CGH is important for production of collagen and proliferation of fibroblasts.

The Metabolic Effects of FGF21: From Physiology to Pharmacology (생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰)

  • Song, Parkyong
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.640-650
    • /
    • 2020
  • Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.

Crystallization and preliminary X-ray analysis of API5-FGF2 complex

  • Bong, Seoung Min;Lee, Byung Il
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.92-95
    • /
    • 2018
  • API5 is a unique oncogenic, non-BIR type IAP nuclear protein and is up-regulated in several cancers. It exerts several functions, such as apoptosis inhibition, cell cycle progression, cancer immune escape, and anticancer drug resistance. Although structural studies of API have revealed that API5 mediates protein-protein interactions, its detailed molecular functions remain unknown. Since FGF2 is one of API5's major interacting proteins, structural studies of the API5-FGF2 complex will provide insight into both proteins' molecular function. We overexpressed and purified API5 and FGF2 in Escherichia coli and crystallized the API-FGF2 complex using polyethylene glycol (PEG) 6000 as a precipitant. Diffraction data were collected to a $2.7{\AA}$ resolution using synchrotron X-rays. Preliminary diffraction analysis revealed that the API5-FGF2 complex crystal belongs to the space group $P2_12_12_1$ with the following unit cell parameters: a = 46.862, b = 76.523, $c=208.161{\AA}$. One asymmetric unit with 49.9% solvent contains one API5-FGF2 complex. Molecular replacement calculation, using API5 and FGF2 coordinates, provided a clear electron density map for an API5-FGF2 complex.

In vivo Radioprotective Effects of Basic Fibroblast Growth Factor in C3H Mice (Basic Fibroblast Growth Factor (bFGF)의 방사선보호작용에 대한 실험적 연구)

  • Kim, Yeon-Shil;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.253-263
    • /
    • 2002
  • Purpose : In order to understand in vivo radiation damage modifying of bFGF on jejunal mucosa, bone marrow and the effect of bFGF on the growth of transplanted mouse sarcoma 180 tumor in mice. Materials and Methods : Mice were treated with $6\;{\mu}g$ of bFGF at 24 hours and 4 hours before exposing to 600 cGy, 800 cGy and 1,000 cGy total body irradiation (TBI), and then exposed to 3,000 cGy local radiation therapy on the tumor bearing thigh. Survival and tumor growth curve were plotted in radiation alone group and combined group of bFGF and irradiation (RT). Histologic examination was performed in another experimental group. Experimental groups consisted of normal control, tumor control, RT (radiation therapy) alone, $6\;{\mu}g$ bFGF alone, combined group of $3\;{\mu}g$ bFGF and irradiation (RT), combined group of $6\;{\mu}g$ bFGF and irradiation (RT). Histologic examination was peformed with H-E staining in marrow, jejunal mucosa, lung and sarcoma 180 bearing tumor. Radiation induced apoptosis was determined in each group with the DNA terminal transferase nick-end labeling method ($ApopTag^{\circledR}$ S7100-kit, Intergen Co.) Results : The results were as follows 1) $6\;{\mu}g$ bFGF given before TBI significantly improved the survival of lethally irradiated mice. bFGF would protect against lethal bone marrow syndrome. 2) $6\;{\mu}g$ bFGF treated group showed a significant higher crypt depth and microvilli length than RT alone group (p<0.05). 3) The bone marrow of bFGF treated group showed less hypocellularity than radiation alone group on day 7 and 14 after TBI (p<0.05), and this protective effect was more evident in $6\;{\mu}g$ bFGF treated group than that of $3\;{\mu}g$ bFGF treated group. 4) bFGF protected against early radiation induced apoptosis in intestinal crypt cell but might have had no antiapoptotic effect in bone marrow stem cell and pulmonary endothelial cells. 5) There was no significant differences in tumor growth rate between tumor control and bFGF alone groups (p>0.05). 6) There were no significant differences in histopathologic findings of lung and mouse sarcoma 180 tumor between radiation alone group and bFGF treated group. Conclusions : Our results suggest that bFGF protects small bowel and bone marrow from acute radiation damage without promoting the inoculated tumor growth in C3H mice. Improved recovery of early responding normal tissue and reduced number of radiation induced apoptosis may be possible mechanism of radioprotective effect of bFGF.

Immunogenicity Study of Recombinant Human Basic Fibroblast Growth Factor

  • Kim, Dong-Hwan;Cho, Hyeon;Kang, Kyung-Koo;Ahn, Byoung-Ok;Kang, Soo-Hyung;Kim, Won-Bae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 1999
  • The immunogenicity of the recombinant human basic fibroblast growth factor (rh-bFGF) was investigated by tests for active systemic anaphylaxis (ASA), passive cutaneous anaphylaxis (PCA), passive hemagglutination (PHA) and guinea pig maximization test (GPMT) in mice or guinea pigs. Guinea pigs were sensitized with rh-bFGF ($100-1000\;\mu\textrm{g}/kg$) or rh-bFGF-CFA mixture ($1000\;\mu\textrm{g}/kg$). All animals sensitized with rh-bFGF alone or mixture with CFA showed symptoms of anaphylactic shock. IgE antibodies to rh-bFGF were detected in sera obtained from rh-bFGF and rh-bFGF-Alum ($1000\;\mu\textrm{g}/kg$) sensitized mice, indicating that rh-bFGF has immunogenicity eliciting potential. IgG and/or IgM antibodies to rh-bFGF were also detected in all the sera obtained from sensitized mice by PHA. In the GPMT for delayed type skin reaction, no skin reaction was observed in sensitized guinea pigs after intradermal injection and dermal application of 0.01% rh- bFGF. However, these positive reactions were consistent with the results of another rh-bFGF, showing that rh- bFGF is a heterogenous protein to rodents. Considering the fact that rh-bFGF is a genuine human protein of which structure is identical to the endogenous human bFGF, it is thought that rh-bFGF is rarely associated with immunological problems in clinical use.

  • PDF

Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes (Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향)

  • Bakhovuddin Azamov;Yeowon Kang;Chanhee Lee;Wan-Seog Shim;Kwang Min Lee;Parkyong Song
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.227-235
    • /
    • 2024
  • Hepatocyte damage caused by medications or herbal products is one of the important problem when these compounds are chronically administrated. Thus, improving hepatocyte survival during treatment offers a wide range of opportunities. Valproic acid (VPA), a branched short-chain fatty acid derived from naturally occurring valeric acid, is commonly used to treat epilepsy and seizures. Although VPA exerts numerous effects in cancer, HIV therapy, and neurodegenerative disease, its effects on the liver and its mechanism of action have not been fully elucidated. Here, we demonstrated that VPA caused moderate liver cell toxicity and apoptosis. Interestingly, VPA treatment increased transcription levels of PPAR alpha (PPAR-α) and fibroblast growth factor 21 (FGF21) in murine (Hepa1c1c7) hepatoma cells in a time and concentration dependent manner. VPA-induced FGF21 expression was significantly weaker under PPAR-α silencing condition than in cells transfected with non-targeting control siRNA. Subsequent experiments showed that cell viability was significantly lowered when the FGF21 signaling pathway was blocked by FGF receptor antagonist. Finally, we further determined that AMPK phosphorylation was not responsible for VPA-induced FGF21 expression and PPAR-a increments. These results indicate that increases of FGF21 expression alleviate VPA-induced hepatic toxicity, thereby making FGF21 a potential biomarker for predicting liver damage during VPA treatments.

EFFECTS OF bFGF AND PDGF-BB ON OSTEOBLAST DIFFERENTIATION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL IN RAT (bFGF, PDGF-BB가 백서 골수기원 간엽 줄기세포의 조직골세포 분화에 미치는 영향에 관한 연구)

  • Song, Gin-Ah;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In this study we evaluate the effects of bFGF-BB and PDGF on in vitro proliferation, differentiation and mineralization of mesenchymal stem cells (MSCs) from rat. MSCs were prepared from the bone marrow of 6 or 7-week-old male rats with a technique previously described by Maniatopoulos et al. in 1988. Lineage differentiation to osteogenesis, chondrogenesis and adipogenesis were performed. At first, we characterized the cultured cell on passage 1, 3, 5, 7 with immunocytochemical staining using CD29, 44, 34, 45, ${\alpha}$-SMA and type I collagen. And to study the effects of bFGF and PDGF-BB on proliferation, differentiation and mineralization, we seeded the expanded cell at a density of 6 $6{\times}10^3\;cells/cm^2$ to 100-mm dish for evaluation of cell proliferation and MTT assay was carried out on day 2, 4, 7, 9. We also resuspended the cells with same density $(6{\times}10^3\;cells/cm^2)$ to 24 well plates for subculture. On the following day, the attached cells were exposed to 2.5ng/ml bFGF and/or 25ng/ml PDGF-BB daily during 5 days. The osteocalcin (OC) level was assessed and mineral contents were evaluated with alizarin red S staining on subculture day 2, 7, 14, 21. We identified the mesenchymal stem cell from the bone marrow derived cells of rat through their successful multi-differentiation and stable display of its phenotype. And bFGF and PDGF-BB showed the effect that inhibited osteoblastic differentiation and mineralization mildly in above concentration at in vitro culture. This study was supported by grant 04-2004-0120 from the Seoul National University Hospital Research Fund.

Accelerated Wound Healing by ]Recombinant Human Basic Fibroblast Growth Factor in Healing-impaired Animal Models

  • Kang, Soo-Hyung;Oh, Tae-Young;Cho, Hyun;Ahn, Byoung-Ok;Kim,Won-Bae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The stimulatory effect of recombinant human basic fibroblast growth factor (bFGF) on wound healing was evaluated in healing-impaired animal models. Full-thickness wounds were made in prednisolone-treated mice, streptozotocin (STZ)-induced diabetic rats and mitomycin C (MMC)-treated rats. Saline or bFGF at a dose of 1, 5, or $25\mu\textrm{g}$ per wound was applied to the open wound once a day for three to five days. The degree of wound healing was assessed using wound size and histological parameters such as degree of epidermal and dermal regeneration. Local application of bFGF accelerated wound closure significantly in a dose-dependent manner in all healing-impaired wounds (p<0.05). The wound healing effect of bFGF was further confirmed by histological examination in MMC-treated rats. Epidermal and dermal regeneration were enhanced in bFGF-treated wounds with a dose-related response. Dermal regeneration parameters such as collagen matrix formation and angiogenesis were significantly increased in $5\mu\textrm{g}$, or $\25mu\textrm{g}$ of bFGF-treated wounds when compared to saline-treated wounds (p<0.05). pectin immunostaining on day 8 for vascular endothelium showed an increased number of neovessels in bFGF-treated wounds. These results suggest that topical application of bFGF has beneficial effects on wound healing by angiogenesis and granulation tissue formation in healing-impaired wounds.

  • PDF

Association Study of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors Gene Polymorphism in Korean Ossification of the Posterior Longitudinal Ligament Patients

  • Jun, Jae-Kyun;Kim, Sung-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • Objective : The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL). Methods : A total of 157 patients with OPLL and 222 controls were recruited for a case control association study investigating the relationship between SNPs of FGF2, FGFR1, FGFR2 and OPLL. To identify the association among polymorphisms of FGF2 gene, FGFR1, FGFR2 genes and OPLL, the authors genotyped 9 SNPs of the genes (FGF2 : rs1476217, rs308395, rs308397, and rs3747676; FGFR1 : rs13317 and rs2467531; FGFR2 : rs755793, rs1047100, and rs3135831) using direct sequencing method. SNPs data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Results : Of the SNPs, a SNP (rs13317) in FGFR1 was significantly associated with the susceptibility of OPLL in the codominant (odds ratio=1.35, 95% confidence interval=1.01-1.81, p=0.048) and recessive model (odds ratio=2.00, 95% confidence interval=1.11-3.59, p=0.020). The analysis adjusted for associated condition showed that the SNP of rs1476217 (p=0.03), rs3747676 (p=0.01) polymorphisms in the FGF2 were associated with diffuse idiopathic skeletal hyperostosis (DISH) and rs1476217 (p=0.01) in the FGF2 was associated with ossification of the ligament flavum (OLF). Conclusion : The results of the present study revealed that an FGFR1 SNP was significantly associated with OPLL and that a SNP in FGF2 was associated with conditions that were comorbid with OPLL (DISH and OLF).

Effect of Single Growth Factor and Growth Factor Combinations on Differentiation of Neural Stem Cells

  • Choi, Kyung-Chul;Yoo, Do-Sung;Cho, Kyung-Sock;Huh, Pil-Woo;Kim, Dal-Soo;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.375-381
    • /
    • 2008
  • Objective : The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF). insulin growth factor-I (IGF-I). brain-derived neurotrophic factor (BDNF). and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. Methods : Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using $\beta$-tubulin III and NeuN as neural markers. Results : Neural differentiations in the presence of individual growth factors for $\beta$-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-I, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for $\beta$-tubulin III and 3.1% for NeuN. For $\beta$-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1 %; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). Conclusion : Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and post-mitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.