Crystallization and preliminary X-ray analysis of API5-FGF2 complex

  • Received : 2018.10.05
  • Accepted : 2018.10.25
  • Published : 2018.12.31

Abstract

API5 is a unique oncogenic, non-BIR type IAP nuclear protein and is up-regulated in several cancers. It exerts several functions, such as apoptosis inhibition, cell cycle progression, cancer immune escape, and anticancer drug resistance. Although structural studies of API have revealed that API5 mediates protein-protein interactions, its detailed molecular functions remain unknown. Since FGF2 is one of API5's major interacting proteins, structural studies of the API5-FGF2 complex will provide insight into both proteins' molecular function. We overexpressed and purified API5 and FGF2 in Escherichia coli and crystallized the API-FGF2 complex using polyethylene glycol (PEG) 6000 as a precipitant. Diffraction data were collected to a $2.7{\AA}$ resolution using synchrotron X-rays. Preliminary diffraction analysis revealed that the API5-FGF2 complex crystal belongs to the space group $P2_12_12_1$ with the following unit cell parameters: a = 46.862, b = 76.523, $c=208.161{\AA}$. One asymmetric unit with 49.9% solvent contains one API5-FGF2 complex. Molecular replacement calculation, using API5 and FGF2 coordinates, provided a clear electron density map for an API5-FGF2 complex.

Keywords

Acknowledgement

Supported by : National Cancer Center, National Research Foundation of Korea (NRF)

References

  1. Basset, C., Bonnet-Magnaval, F., Navarro, M.G., Touriol, C., Courtade, M., Prats, H., Garmy-Susini, B., and Lacazette, E. (2017). Api5 a new cofactor of estrogen receptor alpha involved in breast cancer outcome. Oncotarget 8, 52511-52526. https://doi.org/10.18632/oncotarget.17281
  2. Boelaert, K., McCabe, C.J., Tannahill, L.A., Gittoes, N.J., Holder, R.L., Watkinson, J.C., Bradwell, A.R., Sheppard, M.C., and Franklyn, J.A. (2003). Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 88, 2341-2347. https://doi.org/10.1210/jc.2002-021113
  3. Chlebova, K., Bryja, V., Dvorak, P., Kozubik, A., Wilcox, W.R., and Krejci, P. (2009). High molecular weight FGF2: the biology of a nuclear growth factor. Cell Mol Life Sci 66, 225-235. https://doi.org/10.1007/s00018-008-8440-4
  4. Cho, H., Chung, J.Y., Song, K.H., Noh, K.H., Kim, B.W., Chung, E.J., Ylaya, K., Kim, J.H., Kim, T.W., Hewitt, S.M., and Kim, J.H. (2014). Apoptosis inhibitor-5 overexpression is associated with tumor progression and poor prognosis in patients with cervical cancer. BMC Cancer 14, 545. https://doi.org/10.1186/1471-2407-14-545
  5. de Almagro, M.C., and Vucic, D. (2012). The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anticancer therapy. Exp Oncol 34, 200-211.
  6. Dynek, J.N., and Vucic, D. (2013). Antagonists of IAP proteins as cancer therapeutics. Cancer Lett 332, 206-214. https://doi.org/10.1016/j.canlet.2010.06.013
  7. Fukui, S., Nawashiro, H., Otani, N., Ooigawa, H., Nomura, N., Yano, A., Miyazawa, T., Ohnuki, A., Tsuzuki, N., Katoh, H., Ishihara, S., and Shima, K. (2003). Nuclear accumulation of basic fibroblast growth factor in human astrocytic tumors. Cancer 97, 3061-3067. https://doi.org/10.1002/cncr.11450
  8. Garcia-Jove Navarro, M., Basset, C., Arcondeguy, T., Touriol, C., Perez, G., Prats, H., and Lacazette, E. (2013). Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS One 8, e71443. https://doi.org/10.1371/journal.pone.0071443
  9. Han, B.G., Kim, K.H., Lee, S.J., Jeong, K.C., Cho, J.W., Noh, K.H., Kim, T.W., Kim, S.J., Yoon, H.J., Suh, S.W., Lee, S., and Lee, B.I. (2012). Helical repeat structure of apoptosis inhibitor 5 reveals protein-protein interaction modules. J Biol Chem 287, 10727-10737. https://doi.org/10.1074/jbc.M111.317594
  10. Hassan, M., Watari, H., AbuAlmaaty, A., Ohba, Y., and Sakuragi, N. (2014). Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014, 150845.
  11. Imre, G., Berthelet, J., Heering, J., Kehrloesser, S., Melzer, I.M., Lee, B.I., Thiede, B., Dotsch, V., and Rajalingam, K. (2017). Apoptosis inhibitor 5 is an endogenous inhibitor of caspase-2. EMBO Rep 18, 733-744. https://doi.org/10.15252/embr.201643744
  12. Krejci, P., Pejchalova, K., Rosenbloom, B.E., Rosenfelt, F.P., Tran, E.L., Laurell, H., and Wilcox, W.R. (2007). The antiapoptotic protein Api5 and its partner, high molecular weight FGF2, are up-regulated in B cell chronic lymphoid leukemia. J Leukoc Biol 82, 1363-1364. https://doi.org/10.1189/jlb.0607425
  13. Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  14. Mayank, A.K., Sharma, S., Nailwal, H., and Lal, S.K. (2015). Nucleoprotein of influenza A virus negatively impacts antiapoptotic protein API5 to enhance E2F1-dependent apoptosis and virus replication. Cell Death Dis 6, e2018.
  15. Morris, E.J., Michaud, W.A., Ji, J.Y., Moon, N.S., Rocco, J.W., and Dyson, N.J. (2006). Functional identification of Api5 as a suppressor of E2Fdependent apoptosis in vivo. PLoS Genet 2, e196. https://doi.org/10.1371/journal.pgen.0020196
  16. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326.
  17. Rigou, P., Piddubnyak, V., Faye, A., Rain, J.C., Michel, L., Calvo, F., and Poyet, J.L. (2009). The antiapoptotic protein AAC-11 interacts with and regulates Acinus-mediated DNA fragmentation. EMBO J 28, 1576-1588. https://doi.org/10.1038/emboj.2009.106
  18. Sasaki, H., Moriyama, S., Yukiue, H., Kobayashi, Y., Nakashima, Y., Kaji, M., Fukai, I., Kiriyama, M., Yamakawa, Y., and Fujii, Y. (2001). Expression of the antiapoptosis gene, AAC-11, as a prognosis marker in non-small cell lung cancer. Lung Cancer 34, 53-57.
  19. Song, K.H., Kim, S.H., Noh, K.H., Bae, H.C., Kim, J.H., Lee, H.J., Song, J., Kang, T.H., Kim, D.W., Oh, S.J., Jeon, J.H., and Kim, T.W. (2015). Apoptosis Inhibitor 5 Increases Metastasis via Erk-mediated MMP expression. BMB Rep 48, 330-335. https://doi.org/10.5483/BMBRep.2015.48.6.139
  20. Tewari, M., Yu, M., Ross, B., Dean, C., Giordano, A., and Rubin, R. (1997). AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal. Cancer Res 57, 4063-4069.
  21. Van den Berghe, L., Laurell, H., Huez, I., Zanibellato, C., Prats, H., and Bugler, B. (2000). FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2. Mol Endocrinol 14, 1709-1724. https://doi.org/10.1210/mend.14.11.0556
  22. Vucic, D., and Fairbrother, W.J. (2007). The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13, 5995-6000. https://doi.org/10.1158/1078-0432.CCR-07-0729
  23. Zhu, X., Komiya, H., Chirino, A., Faham, S., Fox, G.M., Arakawa, T., Hsu, B.T., and Rees, D.C. (1991). Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251, 90-93. https://doi.org/10.1126/science.1702556