• Title/Summary/Keyword: FFT signal processing

Search Result 203, Processing Time 0.033 seconds

Noise Analysis of Geared Motor using Cepstrum and Comb Lifter (Cepstrum과 Comb Lifter를 이용한 기어드 모터의 소음 분석)

  • Lee Min Hwan;Kang Dong Bae;Kim Hwa Young;Ahn Jung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.72-79
    • /
    • 2005
  • Gearing system emits inconsistent noise from gear teeth impact in case of gear defects. But, it is not easy for inspection operator in production line to distinguish objectively the defective product. Therefore, customer complains continuously bad noise of the geared motor. Because impulsive signal at low frequency has a tendency not to appear in frequency domain, it is difficult to separate the gear inconsistent noise of defective gear from overall geared motor's noise using general signal processing method such as FFT. In this paper, the method to estimate more objectively the inconsistent noise of gearing system and to measure the quantities is suggested. Suggested method uses Cepstrum, Autocorrelation, Comb Lifter and Inverse Cepstrum by turns to make objective quantities about noise level.

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

A Study on Optimum Coding Method for Correlation Processing of Radio Astronomy (전파천문 상관처리를 위한 최적 코딩 방법에 관한 연구)

  • Shin, Jae-Sik;Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Chung, Dong-Kyu;Oh, Chung-Sik;Hwang, Ju-Yeon;So, Yo-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.139-148
    • /
    • 2015
  • In this paper, the optimum coding method is proposed by using open library in order to improve the performance of a software correlator developed for Korea-Japan Joint VLBI Correlator(KJJVC). The correlation system for VLBI observing system is generally implemented with hardware using ASIC or FPGA because the computational quantity is increased geometrically according to the participated observatory number. However, the software correlation system is recently constructed at a massive server such as a cluster using software according to the development of computing power. Since VLBI correlator implemented with hardware is able to conduct data processing with real-time or quasi real-time compared with mostly observational time, software correlation has to perform optimal data processing in coding work so as to have the same performance as that of the hardware. Therefore, in this paper, the experimental comparison was conducted by open-source based fftw library released in FFT processing stage, which is the most important part of the correlator system for performing optimum coding work in software development phase, such as general method using fftw library or methods using SSE(Streaming SIMD Extensions), shared memory, or OpenMP, and method using merged techniques listed above. Through the experimental results, the proposed optimum coding method for improving the performance of developed software correlator using fftw library, shared memory and OpenMP is effectively confirmed by reducing correlation time compared with conventional method.

Realization of Fast Walsh Transform by using a micro-computer (마이크로 컴퓨터에 의한 Fast Walsh Transform에 관한 연구)

  • Yoo, S.J.;Oh, M.H.;Chai, Y.M.;Choi, S.W.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.138-141
    • /
    • 1989
  • In resent years, aided by the power and capability of digital computation, the techniques of Walsh Transform have been exploited for applications in commun- ication and signal processing. This paper presents an approach of FWT by using a 16- bit word-length micro- computer. This FWT implements an in-placed decimation-in-sequency algorithm which improves processing speed and memory storage. Several examples illustrate the process and demonstrate the power spectrum of FWT and that of FFT for the waveforms

  • PDF

A Study on Fault Classification of Machining Center using Acceleration Data Based on 1D CNN Algorithm (1D CNN 알고리즘 기반의 가속도 데이터를 이용한 머시닝 센터의 고장 분류 기법 연구)

  • Kim, Ji-Wook;Jang, Jin-Seok;Yang, Min-Seok;Kang, Ji-Heon;Kim, Kun-Woo;Cho, Young-Jae;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.29-35
    • /
    • 2019
  • The structure of the machinery industry due to the 4th industrial revolution is changing from precision and durability to intelligent and smart machinery through sensing and interconnection(IoT). There is a growing need for research on prognostics and health management(PHM) that can prevent abnormalities in processing machines and accurately predict and diagnose conditions. PHM is a technology that monitors the condition of a mechanical system, diagnoses signs of failure, and predicts the remaining life of the object. In this study, the vibration generated during machining is measured and a classification algorithm for normal and fault signals is developed. Arbitrary fault signal is collected by changing the conditions of un stable supply cutting oil and fixing jig. The signal processing is performed to apply the measured signal to the learning model. The sampling rate is changed for high speed operation and performed machine learning using raw signal without FFT. The fault classification algorithm for 1D convolution neural network composed of 2 convolution layers is developed.

Low-Cost Remote Power-Quality-Failure Monitoring System using Android APP and MCU (안드로이드 앱과 MCU를 이용한 저가형 원격 전원품질이상 감시 시스템)

  • Lim, Ho-Kyoun;Kim, Seo-Hwi;Lee, Seung-Hyeon;Choe, Sangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.144-155
    • /
    • 2013
  • This paper presents a low-cost remote power-quality-failure monitoring system (RPMS) using Android App and TI MCU (micro-controller unit), which is appliable to a micro-grid. The designed RPMS testbed consists of smart nodes, a server, and Android APPs. Especially, the C2000-series MCU-based RPMS smart node that is low-cost compared to existing monitoring systems has both a signal processing function for power signal processing and a data transmission function for power-quality monitoring data transmission. The signal processing function implements both a wavelet-based power failure detection algorithm including sag, swell, and interruption, and a FFT-based power failure detection algorithm including harmonics such that reliable and real-time power quality monitoring is guaranteed. The data transmission function implements a low-complexity RPMS transmission protocol and defines a simple data format (msg_Diag) for power monitoring message transmission. We may watch the monitoring data in real time both at a server and Android phone Apps connected to the WiFi network (or WAN). We use RS-232 (or Bluetooth) as the wired (or wireless) communication media between a server and nodes. We program the RPMS power-quality-failure monitoring algorithm using C language in the CCS (Code Composer Studio) 3.3 environment.

Synthetic Aperture Sonar for Conformal Towed Array (왜곡된 형상을 갖는 어레이를 위한 합성 처리 기법)

  • 김준환;양인식;김기만;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2000
  • The previous synthetic aperture techniques have been investigated to increase signal gain, improve angular resolution and peak-to-sidelobe level ratios for towed line array sonar systems. The synthetic aperture method in this paper is performed for conformal array systems by mapping real elements on an axis to control like a linear array. The proposed method for the conformal array performs coherent processing of subaperture signals at successive time intervals in the beam domain via FFT transformations. This was confirmed by the simulation results and compared to the results from use of the synthetic aperture technique under the conformal array.

  • PDF

Experimental Test and Performance Evaluation of Mid-Range Automotive Radar Systems Using 2D FFT ROI (2D FFT ROI를 이용한 중단거리 차량용 레이더의성능 시험 및 평가)

  • Jonghun, Lee;Youngseok, Jin;Seoungeon, Song;Seokjun, Ko
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we developed a mid-range automotive radar systems based on the performance requirements and test procedures of the intelligent transport systems, that is lane change decision aid systems (LCDAS). The mid-range automotive radar has the maximum detection range up to 80m and an update time within 50ms. The computational loads of a signal processing were reduced by using ROI preprocessing technique. Considering actual driving environments, radar performance evaluations were conducted in two driving scenarios at an automotive proving ground.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Efficient FPGA Logic Design for Rotatory Vibration Data Acquisition (회전체 진동 데이터 획득을 위한 효율적인 FPGA 로직 설계)

  • Lee, Jung-Sik;Ryu, Deung-Ryeol
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • This paper is designed the efficient Data Acquisition System for an vibration of rotatory machines. The Data Acquisition System is consist of the analog logic having signal filer and amplifier, and digital logic with ADC, DSP, FPGA and FIFO memory. The vibration signal of rotatory machines acquired from sensors is controlled by the FPGA device through the analog logic and is saved to FIFO memory being converted analog to digital signal. The digital signal process is performed by the DSP using the vibration data in FIFO memory. The vibration factor of the rotatory machinery analysis and diagnosis is defined the RMS, Peak to Peak, average, GAP, FFT of vibration data and digital filtering by DSP, and is need to follow as being happened the event of vibration and make an application to an warning system. It takes time to process the several analysis step of all vibration data and the event follow, also special event. It should be continuously performed the data acquisition and the process, however during processing the input signal the DSP can not be performed to the acquisited data after then, also it will be lose the data at several channel. Therefore it is that the system uses efficiently the DSP and FPGA devices for reducing the data lose, it design to process a part of the signal data to FPGA from DSP in order to minimize the process time, and a process to parallel process system, as a result of design system it propose to method of faster process and more efficient data acquisition system by using DSP and FPGA than signal DSP system.