• Title/Summary/Keyword: FESEM

Search Result 337, Processing Time 0.021 seconds

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO (ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구)

  • So-Young, Bak;Se-Hyeong, Lee;Chan-Yeong, Park;Dongki, Baek;Moonsuk, Yi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

Surface characteristics and stability of implants treated with alkali and heat (알칼리와 열처리에 의한 임플란트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Song, Yun-Seok;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.490-499
    • /
    • 2008
  • Statement of problem: Bioactive materials must have the ability to spontaneously form a bone like apatite layer on their surface and induce direct biochemical bonding to bone. A simple chemical treatment via alkali and heat has been revealed to induce bioactivity in titanium. Purpose: The purpose of this study was to evaluate the surface characteristics and stability of alkali and heat treated implants. Material and methods: Specimens were divided into three groups; group 1 was the control group with machined surface implants, groups 2 and 3 were treated with alkali solutions and heat treated in the atmosphere and vacuum conditions respectively. The surface characteristics were observed with FESEM, XPS, TF-XRD and AFM. Stability was evaluated with the resonance frequency analysis, periotest and removal torque values. One-way ANOVA and Duncan test were used for statistical analysis. Results: 1. Groups treated with alkali and heat showed similar characteristics. Groups 2 and 3 showed high compositions of Na ions on the surface with sub-micron sized pores compared to group 1. Group 2 showed mixed compositions of anatase and rutile with superior contents of rutile. 2. Resonance frequency analysis : The ISQ of group 2 showed significantly higher values than that of groups 1 and 3 at 12 weeks. The ISQ of groups 1 and 2 showed significant increase after 4 weeks, and the ISQ of group 3 increased significantly after 2 and 4 weeks respectively (P < .05). 3. Periotest: The PTV of groups 1 and 2 showed significant decrease after 4 weeks, and the PTV of group 3 showed significant decrease after 2 and 4 weeks respectively (P < .05). 4. Removal torque analysis: The removal torque value of group 2 was significantly higher than those of groups 1 and 3 at 2, 4 and 8 weeks. The removal torque values of groups 1 and 3 showed increase at 4 and 12 weeks, but the removal torque value of group 2 showed increase after 4 weeks (P < .05). Conclusion: An oxide layer with appropriate crystal structure and amorphous sodium titanate layer can be obtained on titanium implants through alkali and heat treatment in the atmosphere, and even alkali and heat treatment in vacuum conditions, provided a bioactive surface containing sodium. These surface layers can be considered to be effective for enhancement of osseointegration and reduction of healing period for implant treatment.

A Study on the Application of Physical Soil Washing Technology at Lead-contaminated Shooting Range in a Closed Military Shooting Range Area (폐 공용화기사격장 내 납오염 사격장 군부지의 물리적 토양세척정화기술 적용성 연구)

  • Jung, Jaeyun;Jang, Yunyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.492-506
    • /
    • 2019
  • Heavy metal contaminants in the shooting range are mostly present in a warhead circle or a metal fragment present as a particle, these fine metal particles are weathered for a long period of time is very likely that the surface is present as an oxide or carbon oxide. In particular, lead which is a representative contaminant in the shooting range soil, is present as more fine particles because it increases the softness and is stretched well. Therefore, by physical washing experiment, we conducted a degree analysis, concentration of heavy metals by cubic diameter, composition analysis of metallic substances, and assessment of applicability of gravity, magnetism and floating selection. The experimental results FESEM analysis and the measurement results lead to the micro-balance was confirmed thatthe weight goes outless than the soil ofthe same size in a thinly sliced and side-shaped structure according to the dull characteristics it was confirmed that the high specific gravity applicability. In addition, the remediation efficiency evaluation results using a hydrocyclone applied to this showed a cumulative remediation efficiency of 71%,twice 80%, 3 times 91%. On the other hand, magnetic sifting showed a low efficiency of 17%,floating selection -35mesh (0.5mm)target soil showed a relatively high efficiency to 39% -10mesh (2mm) efficiency was only 16%. The target treatment diameter of soil washing should be 2mm to 0.075mm, which is applied to the actual equipment by adding an additional input classification, which would require management as additional installation costs and processes are constructed. As a result, it is found that the soilremediation of shooting range can be separately according to the size of the warhead. The size is larger than the gravel diameter to most 5.56mm, so it is possible to select a specific gravity using a high gravity. However, the contaminants present in the metal fragments were found to be processed by separating using a hydrocyclone of the soil washing according to the weight is less than the soil of the same particle size in a thinly fragmented structure.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Fine Structural Analysis of the Attachment Devices in the Jumping Spider Plexippus setipes (깡충거미 표면 접착장치의 미세구조 분석)

  • Moon, Myung-Jin;Park, Jong-Gu
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.149-156
    • /
    • 2009
  • Fine structure of the dry adhesion system in the tarsal appendages of the jumping spider Plexippus setipes (Araneae: Salticidae) with examined using field emission scanning electron microscope (FESEM). The jumping spiders have the distinctive attachment apparatus for adhesion on smooth dry surface without sticky fluids. They attach to rough substrates using tarsal claws, however attachment on smooth surfaces is achieved by means of a tuft-like hair called a scopula. All eight legs have the scopulae with a pair of claws on the tip of feet, and each scopula is composed of two groups of setae that are capable of dry adhesion on smooth surface. The apex of each seta is flattened pad bearing many specialized adhesive setules on one side. The cuticular sensillae are interspersed at the dorsal surface of the seta. It has been revealed by this research that the contact area of the setule is always a triangular shape, and these cuticular surfaces are connected by the elongated stalks from the underlying setae. Moreover, adhesion between the numerous setules and the setae was prevented by the microscopic hairs, since these were interspersed on the upper side of the setae.

Microstructure of the Antennal Sensilla in the Millipede Anaulaciulus koreanus koreanus (Julida: julidae) (계림갈퀴노래기(Anaulaciulus koreanus koreanus) 촉각 감각모의 미세구조)

  • Chung, Kyung-Hwun;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • The antennae of millipedes have a prominent function in detecting various types of environmental stimuli, and structural modification of the antennae is closely associated with the degree of sense recognition. Although the biological significance of the antennal sensillae to millipedes are widely understood, the structure and function of the antennal sensillae are still not clear and more precise analysis is required. We have analysed the ultrastructural characteristics of the antennal sensillae in a millipede Anaulaciulus koreanus koreanus using field emission scanning electron microscopy (FESEM). According to their morphological and substructural features, we could identify three different types of antennal sensillae as follows: trichoid sensilla (TS), chaetiform sensilla (CS) and basiconic sensilla (BS). The TS on the articles are long, blunt-tipped, almost straight hairs with deep longitudinal grooves in their lower parts whereas, the CS are long, sickleshaped bristles with longitudinal grooves acuminating toward the tip. The BS can be subdivided further into three subtypes which are the large-sized basiconic sensilla ($BS_1$), the small-sized basiconic sensillae ($BS_2$) and the spiniform basiconic sensillae ($BS_3$). The BS between the terminal segment and distal margins of the other segments are clearly discriminated in this species.

Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법에 의한 대면적 투명전도성 ZnO(Al)와 ZnO(AlGa) 박막제조 및 물리적 특성 연구)

  • Son, Young Ho;Choi, Seung Hoon;Park, Joong Jin;Jung, Myoung Hyo;Hur, Youngjune;Kim, In Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • In this study, we studied the properties of ZnO(Al) and ZnO(AlGa) thin film according to film thickness deposited on SLG by In-line magnetron sputtering system. XRD, FESEM, 4-point probe, Hall measurement system and UV/Vis-NIR spectrophotometer were employed to analyze the properties of ZnO(Al) and ZnO(AlGa) thin film. The all films exhibited (002) preferential orientation with clear peak shape and high intensity. The carrier concentration and Hall mobility of ZnO(Al) and ZnO(AlGa) thin film were improved with increasing thickness. The resistivity of both films decreased when the film thickness was raised from 500 nm to 1,450 nm. And then relatively the resistivity of ZnO(AlGa) film was lower than that of ZnO(Al) film. The transmittance of the films decreased with increasing film thickness but all films exhibited optical transmittances of over 83.3% in the visible region.

High-Speed Cu Filling into TSV and Non-PR Bumping for 3D Chip Packaging (3차원 실장용 TSV 고속 Cu 충전 및 Non-PR 범핑)

  • Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.49-53
    • /
    • 2011
  • High-speed Cu filling into a through-silicon-via (TSV) and simplification of bumping process by electroplating for three dimensional stacking of Si dice were investigated. The TSV was prepared on a Si wafer by deep reactive ion etching, and $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to increase the filling rate of Cu into the via, a periodic-pulse-reverse wave current was applied to the Si chip during electroplating. In the bumping process, Sn-3.5Ag bumping was performed on the Cu plugs without lithography process. After electroplating, the cross sections of the vias and appearance of the bumps were observed by using a field emission scanning electron microscope. As a result, voids in the Cu-plugs were produced by via blocking around via opening and at the middle of the via when the vias were plated for 60 min at -9.66 $mA/cm^2$ and -7.71 $mA/cm^2$, respectively. The Cu plug with a void or a defect led to the production of imperfect Sn-Ag bump which was formed on the Cu-plug.

A Study of Copper Electroless Deposition on Tungsten Substrate (텅스텐 기판 위에 구리 무전해 도금에 대한 연구)

  • Kim, Young-Soon;Shin, Jiho;Kim, Hyung-Il;Cho, Joong-Hee;Seo, Hyung-Ki;Kim, Gil-Sung;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.495-502
    • /
    • 2005
  • Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of $CuSO_4$ 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at $60^{\circ}C$. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak ($Cu_2O$ peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of $Cu_2O$ phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.