• Title/Summary/Keyword: FEM stress analysis

Search Result 1,162, Processing Time 0.027 seconds

A Study on Contact Characteristics of Mechanical Face Seals for a Hydro-power Turbine Depending on the Rubbing Surface Geometry (소수력 터빈용 기계평면시일의 표면마찰형상에 따른 접촉특성 해석에관한 연구)

  • Kim Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.119-126
    • /
    • 2006
  • In this paper, the contact behavior characteristics of a primary sealing components such as a seal ring and a seal seat has been presented for a small hydro-power turbine. Using the non-linear FEM analysis, the maximum temperature, the axial displacement, radial differences between a seal ring and a seal seat, and maximum contact normal stress have been analyzed for three optimized sealing profiles in which are designed based on the FEM analysis and Taguchi's experimental method. The three primary sealing profiles between a seal ring and a seal seat are strongly related to a leakage of a water for a hydro-power turbine and wear of a primary sealing component. The computed results show that the contact rubbing area between a seal ring and a seal seat is very important for reducing a friction heating and wear in a sealing gap, and increasing a contact normal stress in primary sealing components. Based on the FEM computation, models II and III in which have a small rubbing surface of seal rings show low dilatation of primary sealing components, and high normal contact stress between a seal ring and a seal seat. Thus, the FEM computed results recommend a short contacting width of a primary sealing component for reducing a leakage and thermal distortions, and expanding a seal life. This means that a conventional primary sealing component may be switched to a reduced sealing face of seal rings.

A Study on Stress Distribution of Korean High Speed Train Wheel at Tread Braking (한국형 고속전철의 답면제동에 의한 차륜의 응력분포에 관한 연구)

  • 권범진;정흥채;김호경
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.3
    • /
    • pp.167-173
    • /
    • 2002
  • The influence of thermal stress at tread breaking in Korean High Speed Train wheel was investigated using the coupled thermal-mechanical analysis technique. The mechanical load or wheel-rail contract load and braking load were considered during FEM analysis. During the stop braking, the effect of mechanical stress on the combined stress is relatively larger than that of thermal stress in the rim of wheel. However, the effect of thermal stress is relatively larger than that of mechanical stress in the plate of wheel. When 300% of the block force was applied, the maximum von Mises stress of 61.0 MPa was found at the outside plate around 400 mm far away from the wheel center.

Introduction of Conventional Stress Analysis Method based on Kowalski's Formula at Internal Thread Undercut

  • Yoon, Jaehuy;Kang, Youngsu;Lee, Inchul;Park, Sangjoon
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.54-57
    • /
    • 2015
  • The purpose of this paper is to provide the method of conventional stress analysis for a pressurized hydraulic cylinder with internal thread undercut. In the case of hydraulic cylinder with thread undercut, several loads and stresses occur during operating. So, the thread undercut can be most critical section has to be considered in detail for strength check. In this paper, the conventional stress analysis method at internal thread undercut of hydraulic cylinder based on Kowalski's formula is introduced. The method is verified by comparing to FEM analysis results using ANSYS.

Analysis of Behavior for Underground Flexible Pipes (지중 연성관의 거동특성 분석)

  • 김경열;상현규;이대수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.315-322
    • /
    • 2001
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various depth are calculated using traditional formula and FEM analysis. The results show that theoretical values are more conservative in strain whereas FEM analysis gives larger stress. Considering the strain criteria - 3.5 %, maximum, flexible pipes can be buried at the range of 50cm to 5m in depth without additional soil improvement.

  • PDF

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis (수치해석을 이용한 FCCSP용 Embedded PCB의 Cavity 구조에 따른 거동특성 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.

A Study on Thermal Cracking of Ventilated Brake Disk of a Car Using FEM Analysis (FEM을 이용한 벤틸레이티드 브레이크 디스크의 열균열 현상에 관한 연구)

  • Kim Ho-Kyung;Chung Chin-Sung;Choi Myung-Il;Lee Young-In
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2005
  • This study presents the thermal cracking on a commercial vehicle ventilated brake disk. Distributions of temperature and thermal stress of the disk were analysed, using FEM analysis, under the several driving conditions with actual vehicle specifications. The results from the fatigue tests on the disk material were compared with those from FEM analysis. In case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, the maximum compressive stress at the disk surface of disk due to braking was 224, 318, and 362 MPa, respectively. It was estimated that each damage fraction of 0.00005, 0.00050, 0.00136 per full stop was imposed on the brake disk in case of deceleration of 0.6 g with initial vehicle speed of 97, 140, and 160 km/h, respectively.

Analysis of Thermal Stresses During Solidification Process Using FVM/FEM Techniques (유한체적법과 유한요소법을 이용한 응고과정에서의 열응력해석)

  • 이진호;황기영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1009-1018
    • /
    • 1994
  • An attempt is made to develop a kind of hybrid numerical method for computations of the thermal stresses during a solidification process. In this algorithm, the phase-change heat transfer analysis is perrformed by a finite volume method(FVM) and the thermal stress analysis in a solidifying body by a finite element method(FEM). The temperatures at the grid points calculated in the heat transfer analysis are transferred to those of gauss points in elements by a bi-cubic surface patch technique for the thermal stress analysis. A hyperbolic-sine constitutive law is used to prescribe the inelastic strain rate of material. Results for the unidirectional solidification process of a pure aluminum are compared with those of others and shows good agreement.

A Dynamic Analysis of Valve Mechanism of High-Speed Engine Using FEM (유한요소법을 이요한 고속엔진 밸브 메카니즘의 동적해석)

  • 임상준;이기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.513-516
    • /
    • 2000
  • This paper presents the analytical studies on the stress and strain of driven valve system of internal combustion engines. The stress and strain is predict using FEM. The particular interest is the dynamic strain at a specific point of the valve and valve seat. Cam and follower Assuming that one rigid surface. This study forced the effects changing Young's modulus and density of valve and valve seat contact area. It supports that the indirect method using FEM is reliable for prediction the actual displacement, stress and strain in the valve system.

  • PDF

Prediction of Welding Stress and Deformation by 3D-FEM Analysis and Its Accuracy (3차원 유한요소해석에 의한 용접응력과 변형의 해석 및 정도)

  • 장경호;이상형;이진형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.11-17
    • /
    • 2000
  • ,An residual stress and out-of plane deformation produced by butt welding was analyzed by four kinds of 3D-FEM programs(Thermal El-P1 Analysis) developed by authors. The magnitude of deformation of perpendicular to the welding line generated by butt welding was large when the reduced integration method was used. This was because of removal of the locking phenomenon, which it was generally known that the stiffness of the shear component of out-of-plane was largely evaluated. And the magnitude of residual stress was analyzed by using the FEM program based on a large and small deformation theory was similar to that was analyzed by the redeced integration method.

  • PDF

Warm Compaction: FEM Analysis of Stress and Deformation States of Compacting Dies with Rectangular Profile of Various Aspect Ratio

  • Armentani, E.;Bocchini, G. F.;Gricri, G.;Esposito, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.191-192
    • /
    • 2006
  • The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.

  • PDF