• Title/Summary/Keyword: FEM method

Search Result 4,273, Processing Time 0.034 seconds

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

Numerical modelling of contaminant transport using FEM and meshfree method

  • Satavalekar, Rupali S.;Sawant, Vishwas A.
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.117-129
    • /
    • 2014
  • Groundwater contamination is seeking a lot of attention due to constant degradation of water by landfills and waste lagoons. In many cases heterogeneous soil system is encountered and hence, a finite element model is developed to solve the advection-dispersion equation for layered soil system as FEM is a robust tool for modelling problems of heterogeneity and complex geometries. Recently developed Meshfree methods have advantage of eliminating the mesh and construct approximate solutions and are observed that they perform effectively as compared to conventional FEM. In the present study, both FEM and Meshfree method are used to simulate phenomenon of contaminant transport in one dimension. The results obtained are agreeing with the values in literature and hence the model is further used for predicting the transport of contaminants. Parametric study is done by changing the dispersion coefficient, average velocity, geochemical reactions, height of leachate and height of liner for obtaining suitability.

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Vibration Analysis of Structures Using the Transfer Stiffness Coefficient Method and the Substructure Synthesis Method (전달강성계수법과 부분구조합성법을 이용한 구조물의 진동해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.24-30
    • /
    • 2001
  • The substructure synthesis method(SSM) is developed for overcoming disadvantages of the Finite Element Method(FEM). The concept of the SSM is as follows. After dividing a whole structure into several substructures, every substructures are analyzed by the FEM or experiment. The whole structure is analyzed by using connecting condition and the results of substructures. The concept of the transfer stiffness coefficient method(TSCM) is based on the transfer of the nodal stiffness coefficients which are related to force vectors and displacement vectors at each node of analytical mode1. The superiority of the TSCM to the FEM in the computation accuracy, cost and convenience was confirmed by the numerical computation results. In this paper, the author suggests an efficient vibration analysis method of structures by using the TSCM and the SSM. The trust and the validity of the present method is demonstrated through the numerical results for computation models.

  • PDF

Analytical Study on Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method (연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어에 관한 해석적 연구)

  • Seo, Tae-Seok;Cho, Yun-Gu;Lee, Kewn-Chu;Lim, Chang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • In this study, the vertical pipe cooling method was developed to propose the pipe cooling method suited for the vertically long mass concrete structures. FEM (finite element method) analysis was carried out to investigate the validity of the vertical pipe cooling method, and the temperature, the behavior of tensile stress of concrete and the crack index were investigated. In result, it was confirmed that the vertical pipe cooling method was effective in the thermal cracking control of mass concrete member.

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

Analysis of bone-remodeling by the influence of external fixator with FEM (FEM을 이용한 외부고정구 영향에 의한 골-재형성에 대한 해석)

  • 김영은;이원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.436-444
    • /
    • 1991
  • A computational method has been developed to analyze the bone-remodeling induced by external fixator. The method was based on the Finite Element Method (FEM) in combination with numerical formulation of adaptive bone-remodeling theories. As a feed-back control variable, compressive strain and effective stress were used to determine the surface remodeling and internal (density) remodeling respectively. Surface remodeling and internal remodeling were combined at each time step to predict the rel situation. A noticeable shape and density change were detected at the region between two pins and density change was decreased with time increment. At final time step, the shape and density distribution were converged closely to its original intact bone model. Similar change was detected in stress distribution. The altered stress distribution due to the pin and external fixator converged to the intact stress distribution with time.

Design of Ultrasonic Tool Horn for Wire Wedge Bonding (와이어 본딩용 초음파 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Oh, Myung-Seok;Ma, Jeong-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.717-722
    • /
    • 2013
  • In this study, we investigated the design of a wire wedge bonding ultrasonic tool horn using finite element method (FEM) simulations. The proposed method is based on an initial design estimate obtained by FEM analysis. An ultrasonic excitation causes various vibrations of a transducer horn and capillary. A simulated ultrasonic transducer horn and resonator are then built and characterized experimentally using a laser interferometer and electrical impedance analyzer. The vibration characteristics and resonance frequencies close to the exciting frequency are identified using ANSYS. FEM analysis is developed to predict the resonance frequency of the ultrasonic horn and use it in the optimal design of an ultrasonic horn mode shape.

A Study on Evaluation of Defects of Pressure Vessel by Using ESPI and FEM (ESPI와 FEM을 이용한 압력용기 결함 측정에 관한 연구)

  • Kang, Young-June;Lee, Jung-Sik;Baik, Sung-Hoon;Park, Seung-Kyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.104-110
    • /
    • 2007
  • Internal defects are mainly caused by a corrosive action and degradation in the pipe used in a nuclear power plant or factory. The ESPI method have the many advantages when compared with conventional method. The advantage are the area measurement ability at one time and non-contact measurement ability in the real-time. In this paper, we studied on the measurement of a internal defect by using out of plane ESPI technique. Here, we compared the experimental results using out of plane ESPI with the FEM results.