• Title/Summary/Keyword: FEM explicit analysis

Search Result 63, Processing Time 0.025 seconds

Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code (LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석)

  • Kim, Moon-Saeng;Lim, Dong-Wan;Lee, Joon-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions (임의 조건으로 성형되는 박판의 평면변형률 해석)

  • ;;R. H. Wagoner
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF

FEM Analysis of Blanking of Mild Steel Sheet at Various Punch Speeds (연강 판재의 속도에 따른 블랭킹의 유한요소해석)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.458-461
    • /
    • 2016
  • In this study, a finite element analysis for high-speed blanking of mild steel is performed. A thermomechanically coupled simulation model of a blanking process was developed using ABAQUS/Explicit. Through a simulation of the high-speed blanking process of mild steel, the influence of the punch speed, tool edge radius, and work material thickness on the development of the plastic heat and punch load were studied. The results of the study revealed that a higher punch speed caused thermal softening of the work material and decreased the punch load. Decreasing tool edge radius could help reduce the punch load. In addition, the results of the study revealed that the thermal softening effect was more dominant in the blanking of a mild steel sheet with a greater thickness as compared to that in the blanking of a mild steel sheet with a lower thickness.

Design of automotive inner panel by sectional forming analysis (단면성형 해석에 의한 자동차 내부 판넬의 설계)

  • 금영탁;왕노만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF

Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM (FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석)

  • Cha Cheon-Seok;Chung Jin-Oh;Yang In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

On The Parallel Inplementation of a Static/Explicit FEM Program for Sheet Metal Forming (판금형 해석을 위한 정적/외연적 유한요소 프로그램의 병령화에 관한 연구)

  • ;;G.P.Nikishikov
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.625-628
    • /
    • 1995
  • A static/implicit finite element code for sheet forming (ITAS3D) is parallelized on IBM SP 6000 multi-processor computer. Computing-load-balanced domain decomposition method and the direct solution method at each subdomain (and interface) equation are developed. The system of equations for each subdomain are constructed by condensation and calculated on each processor. Approximated operation counts are calculated to set up the nonlinear equation system for balancing the compute load on each subdomain. Th esquare cup tests with several numbers of elements are used in demonstrating the performance of this parallel implementation. This procedure are proved to be efficient for moderate number of processors, especially for large number of elements.

  • PDF

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Finite Element Analysis on Negative Clearance Blanking of AL6061-T6 Foil (음의 클리어런스를 갖는 AL6061-T6 포일 블랭킹의 유한요소해석)

  • Song, Shin-Hyung;Choi, Woo Chun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.290-294
    • /
    • 2016
  • A finite element method (FEM) study was performed on micro-scale blanking of an AL6061-T6 foil with negative clearance. ABAQUS/explicit was used to prepare a simulation model of negative clearance blanking with tools having an edge radius comparable to the foil thickness. The Johnson-Cook plastic flow model was used in the simulations for the material flow. The FEM model was used to study the effects of various blanking parameters on the negative clearance blanking process and quality of the blank. In particular, the projecting edge on the bottom of the blank was observed. Research on negative blanking at the micro-scale is summarized and discussed.

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF