• Title/Summary/Keyword: FEM Simulation

Search Result 1,296, Processing Time 0.028 seconds

Structural Safety of Universal Joint using FEM Simulation (FEM 시뮬레이션을 이용한 유니버설 조인트의 구조안전성)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component's material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.

Incremental Sheet Forming of Complex Geometry Shape and Its Optimization Using FEM Analysis (복잡한 형상제품의 인크리멘탈 성형과 FEM을 이용한 공정 최적화)

  • Nguyen, D.T.;Park, J.G.;Lee, H.J.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.207-212
    • /
    • 2009
  • In order to optimize the press formability of incremental sheet forming for complex shape (e.g human face), a combination of both CAM and FEM simulation, is implemented and evaluated from the histories of stress and strain value by means of finite element analysis. Here, the results, using ABAQUS/Explicit finite element code, are compared with fracture limit curve (FLC) in order to predict and optimize the press formability by changing parameters of tool radius and tool down-step according to the orthogonal array of Taguchi's method. Firstly, The CAM simulation is used to create cutter location data (CL data). This data are then calculated, modified and exported to the input file format required by ABAQUS through using MATLAB programming. The FEM results are implemented for negative incremental sheet forming and then investigate by experiment.

  • PDF

Rolling Process and Roll Stress Analysis of CB100 using by 3D FEM (3 차원 FEM 을 이용한 CB100의 압연공정 및 롤 응력 해석)

  • Kim, J.M.;Park, C.S.;Woo, K.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • CB100 is one of the channel type products in the steel beam. In this study, rolling process of CB100 is analyzed by 3D FEM simulation and rolling process. FEM simulation result is compared with rolling process data. Also the intermediate & finishing roll stress analysis is carried out and the suitability of the roll through roll stress resultant analysis is evaluated. In order to decrease the roll stress, new pass schedule is developed for stable load balance between intermediate and finishing rolling stand. Therefore new rolling pass schedule is verified by the analysis results of rolling process and roll stress. By the analysis results, the credibility of rolling process analysis was obtained and it was determined that the possibility of roll damage between intermediate and finishing mill was high. So the new pass schedule was developed. Through the result of rolling process and roll stress analysis, it was obtained that the reduction of roll stress and stable load balance.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

The User Experience Evaluation of VR/AR Technology in the FEM/CFD Simulation (구조/유체 시뮬레이션에서 VR/AR기술의 사용자 경험 평가)

  • Seo, Dongwoo;Park, Sangjin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.1-7
    • /
    • 2019
  • This study focused on the usability and the difference between VR and AR technology in the FEM/CFD simulation environments. First, this paper explains the current status and prospect of the VR/AR technology and conducted a case study on the VR and AR service in the FEM/CFD simulation environments. In addition, we made the evaluation strategies for usability by a review of previous research. And then, after Interviewers participants who use of simulation at a specific site C to we investigated the usability of the VR and AR service based on the mobile device in the FEM/CFD simulation environments. The result of this study is look forward to be used as a design service to form a VR and AR service in the future.

Design and Manufacturing processes of Ti-6Al-4V profiled ring-products (Ti-6Al-4V 합금의 형상 링 압연공정 설계 및 제조기술)

  • Kim, K.J.;Kim, N.Y.;Lee, J.M.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.72-75
    • /
    • 2009
  • Design and Manufacturing processes of Ti-6Al-4V profiled ring-products were investigated with three-dimensional FEM simulation and experimental analyses. FEM simulation for the ring-rolling process was used to calculate the state variables such as strain, strain rate and temperature. In the simulation results of strain and temperature distributions for a plane ring rolling process, the strain level at the surface area is higher than that at the mid-plane, but the temperature level at the surface area is lower than that at mid-plane due to heat transfer between the workpiece and the work roll. These distributions showed a great influence on the evolution of microstructure in different positions. In order to induce the uniform deformation of the profile ring and reduce the applied load, the final blank was prepared by two-step processes. The mechanical properties of Ti-6Al-4V alloy ring products made in this work were investigated with tensile and impact tests and analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

Numerical Simulation of Nitrogen Discharge at Medium Pressure between Point-Plane Electrodes (침-평판 전극 사이에서 중간 압력 질소 방전의 시뮬레이션)

  • Koh, Wook-Hee;Park, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • The numerical simulation of point-to-plane discharge of nitrogen at medium pressure has been achieved by a quasi-2d numerical model. In the model, we calculate the distributions of electric charges which are varying as temporal and space and determine the electric field depending on space charge distribution by solving Poisson's equation. The continuity equations are treated numerically by using FCT (Flux-Corrected Transport) Algorithm and FEM (Finite Element Method). The numerical simulation results make us to understand the physical characteristics of nitrogen discharge at 50 torr. The comparison with experimental results[1] shows a good qualitative agreement.

A Study on Shearing Mechanism by FEM (유한요소법을 이용한 전단 메카니즘에 관한 연구)

  • 정성훈;강정진;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.211-223
    • /
    • 1995
  • The purpose of the present study is to examine shearing mechanism through rigidplastic finite element analysis. Difficulties arise in simulating shearing process due tothe narrow shear band formation andlackof proper fracture resolve these difficulties by using adaptive mesh generation crriterion. The simulation results are obtained for various punch clearances and these are compared with existing experimental results. It is shown that FEM simulation technique can be used to further understand the shearing mechanism.

  • PDF

The Study of Dynamic Characteristic of PMLSM According to Variable Load (영구자석형 선형 동기 전동기의 가변부하에 따른 동특성 해석)

  • Lee, Seung-Hoon;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • This paper presents the dynamic characteristic analysis of Permanent Magnet Linear Synchronous Motor(PMLSM) according to variable load. In order to analyze dynamic characteristics, finite element method(FEM) was used for calculation of the parameter and the Matlab simulink was used for dynamic characteristic simulation. The measuring system of the dynamic characteristics was manufactured and the experiment results were compared with the simulation results.