• Title/Summary/Keyword: FEM 시뮬레이션

Search Result 253, Processing Time 0.029 seconds

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model (등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석)

  • Han, Dong Hee;Kim, Il Kwang;Lee, Soo Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.461-466
    • /
    • 2015
  • Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals (이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계)

  • Kim, Dong-Bum;Lee, Mun-Yong;Park, Byung-Joon;Park, Jong-Kweon;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.802-807
    • /
    • 2012
  • Self-piercing rivet is sheet joining method. It is being used more to join aluminum alloy sheets. Self-piercing riveting is a large-deformation process that involves piercing. The self-piercing rivet, under the press from the punch, pierces the top sheet and forms a mechanical interlock with the bottom sheet. In this study, forging process was designed for manufacturing self-piercing rivet. The forging process has been simulated by using commercial FEM code DEFORM-2D. In simulation of forging process for manufacturing rivet, process sequence, formability, forging load, and distributions of stress and strain were investigated. The suitable forging process could be designed by comparisons of simulation results. The developed process consists of four stages: upsetting, first chamfering, back extrusion, and second chamfering. The simulated results for forging process were confirmed by experimental trials with the same conditions.

A Study on the Extraction of Parasitic Capacitance for Multiple-level Interconnect Structures (다층배선 인터커넥트 구조의 기생 캐패시턴스 추출 연구)

  • 윤석인;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.44-53
    • /
    • 1999
  • This paper are reported a methodology and application for extracting parasitic capacitances in a multi-level interconnect semiconductor structure by a numerical technique. To calculate the parasitic capacitances between the interconnect lines, we employed finite element method (FEM) and calculated the distrubution of electric potential in the inter-metal layer dielecric(ILD) by solving the Laplace equation. The three-dimensional multi-level interconnect structure is generated directly from two-dimensional mask layout data by specifying process sequences and dimension. An exemplary structure comprising two metal lines with a dimension of 8.0$\times$8.0$\times$5.0$\mu\textrm{m}^3/TEX>, which is embedded in three dielectric layer, was simulated to extract the parasitic capacitances. In this calculation, 1960 nodes with 8892 tetrahedra were used in ULTRA SPARC 1 workstation. The total CPU time for the simulation was 28 seconds, while the memory size of 4.4MB was required.

  • PDF

Concrete Median Barrier Performance Improvement using Stiffness and Flexibility Reinforcement (강성 및 연성 보강을 통한 콘크리트 중앙분리대 성능 향상 분석)

  • Kim, Chan-Hee;Kim, Woo Seok;Lee, Ilkeun;Lee, Jaeha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there was an collision accident of vehicle-concrete median barrier and unfortunately, passengers were killed by exceeded capacity of concrete median. Therefore, improving the capacity of concrete median barrier is need to reduce damage. Accordingly, in this study, appropriate collision model verified by using the FE analysis program LS-Dyna and recommend a concrete median barrier section. The improvement parameters such as wire mesh diameter, steel plate, rubber pad were selected for improved capacity of the median barrier. Finally, section of concrete median barrier improved wire mesh diameter decreased volume loss, section of concrete median barrier improved rubber pad accepted impact loading and increased elastic area.

Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System (컴퓨터 시뮬레이션을 이용한 극저온 절단 기술 적용성 연구 및 극저온 절단 시스템 주요 부품 제작)

  • Kim, Sung-Kyun;Lee, Dong-Gyu;Lee, Kune-Woo;Song, Oh-Seop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  • PDF

Absorbing Boundary Conditions and Parallelization for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 해석의 흡수경계조건 고찰 및 병렬화)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.67-76
    • /
    • 2022
  • Power and signal transmission using electromagnetic waves are essential in modern times, and a guided structure is needed to transmit electromagnetic waves efficiently through the desired path. This paper performed an electromagnetic simulation using the in-house code for the 2-D/3-D waveguide using the finite element method. The accuracy of the analysis was verified by comparing it with the results of HFSS, a representative electromagnetic wave simulation software. In addition, the performance of the Absorbing Boundary Condition (ABC), which is essential to truncate the infinite computational domain for computational electromagnetics, was analyzed. Finally, the parallelization technique was applied to accelerate the simulation speed, demonstrating performance improvement.

Lobe Curve Characteristic Analysis of Resistance Spot Welding for Sheet Combination of 780MPa Steel Sheet Using Simulation (시뮬레이션을 이용한 780MPa급 강재의 판재 조합에 따른 저항 점 용접의 로브곡선 특성 분석)

  • Son, Chang-Seok;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.68-73
    • /
    • 2012
  • Nowadays, car manufacturers tried to improve automotive fuel efficiency, and applied many high strength steels such as AHSS or UHSS to car bodies. Therefore, the number of steel combinations for the resistance spot welding are dramatically increased and the need for weldability evaluation of these combinations are also required. In this study, we suggest the lobe curve using FEM simulations for DP780 steel with 1.0t, 1.4t. The lobe curves which could expressed weldablity and optimal welding condition were obtained according to 6 steel combinations. There were two combinations for same steel sheet which were DP780 1.0t, DP780 1.4t. Dissimilar steel sheet combination with different thickness was 1.0t and 1.4t of DP780. Different steel combinations were DP780 1.0t and SPRC440 1.0t, and DP780 1.0t and DP590 1.0t. Finally dissimilar combinations was and DP780 1.0t and DP590 1.4t. The trend of low boundary and high boundary variation of lobe curve were analyzed with a viewpoint of the contact resistance and the heat input.

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석))

  • 오진원;백성민;금영탁
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2004
  • When porous materials are dried, the particles flocculate into fish-net structure in gel phase. In order to exactly analyze the stress distribution of porous materials during drying process, the elastic tensor of microscopic gel structures has to be predicted considering pore shapes as well as porosities of porous materials. The elastic characteristics of porous materials associated with porosities were predicted analyzing microscopic gel structures with circular and cross pores via homogenization method and the drying processes of the electric porous ceramic insulator were simulated using finite element method (FEM). Comparing analysis results between consideration and negligence of pores, the deformed shape and distributions of temperature and moisture were similar but the residual stress was significantly different.

Lumped Parameter Modelling and Analysis of Flat Coil Actuator with Shorted Turn (평판형 전자기 엑츄에이터의 집중매개변수 모델링 및 해석)

  • Hwang, Ki-Il;Kim, Jin-Ho;Lee, Jung-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.149-152
    • /
    • 2010
  • The flat coil actuator is widely used to make high precision products because it has no friction between the moving coil and the guide. Finite Element Method, a favored actuator design tool due to its high accuracy, was utilized to analyze the electromagnetic actuator, but it consumes a lot of time especially in computation iterations for optimization. Accordingly, the magnetic equivalent circuit analysis can be an alternative tool to FEM because of its computation iteration capability with fair accuracy. In this paper, lumped parameter model and the simulation results are presented. In addition, the result of lumped parameter analysis is compared with those obtained from finite element analysis for verification.

Design of Band Pass Filter using the Triple-Mode Resonators (3중모드 공진기를 이용한 대역통과 필터(BPF)의 설계)

  • 황재호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.899-905
    • /
    • 2001
  • This paper presents a triple-mode dielectric resonator far low loss and simple structure filter design. The BPF(Band Pass Filter) was designed using HFSS simulation results an4 fabricated using proposed resonators. The filter (3-stage BPF) has an insertion loss of about 0.9 dB at the center frequency of 1.93 GHz and a 3 dB bandwidth of about 25 MHz. If more complex characteristic is required, slot coupling between resonators can be used. Especially, the proposed BPF can be applied to the next generation mobile communication IMT-2000 system.

  • PDF