• Title/Summary/Keyword: FEM

Search Result 7,157, Processing Time 0.039 seconds

Stress distributions at the Periodontal ligament and displacements of the maxillary first molar under various molar angulation and rotation . Three dimensional finite element study (구치의 경사도와 회전정도가 발치공간 폐쇄시 치근막의 응력분포와 치아의 초기이동에 미치는 영향에 대한 3차원 유한요소법적 연구)

  • Kwon, Dae-Woo;Son, Woo-Sung;Yang, Hoon-Chul
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.417-428
    • /
    • 2004
  • The purpose of this study was to evaluate the stress distributions at the periodontal ligament (PDL) and displacements of the maxillary first molar when mesially directed force was applied under various molar angulations and rotations. A three dimensional finite element model of the maxiilary first molar and its periodontal ligament was made Upright position, mesially angulated position by $20^{\circ}$ and distally angulated position of the same degree were simulated to investigate the effect of molar angulation. An anteriorly directed force of 200g countertipping moment of 1,800gm-mm (9:1 moment/force ratio) and counterrotation moment of 1,000gm-mm (5:1 moment/force ratio) were applied in each situation. To evaluate the effect of molar rotation on the stress distribution, mesial-in rotation by $20^{\circ}$ and the same amount of distal-in rotation were simulated. The same force and moments were applied in each situation. The results were as follows: In all situations, there was no significant difference in mesially directed tooth displacement Also, any differences in stress distributions could not be found, in other words. there were no different mesial movements. Stress distributions and tooth displacement of the $20^{\circ}$ mesially angulated situation were very similar with those of the $20^{\circ}$ distal-in rotated situation. The same phenomenon was obserned between the $20^{\circ}$ distally angulated situation and $20^{\circ}$ mesial-in rotated situation. When the tooth was mesially angulated, or distal-in rotated, mesially directed force made the tooth rotate in the coronal plane. with its roots moving buccally, and its crown moving lingually. When the tooth was distally angulated, or mesial-in rotated, mesially directed force made the tooth rotate in the coronal plane, with its roots moving lingually and its crown moving buccally. When force is applied to au angulated or rotated molar, the orthodontist should understand that additional torque control is needed to prevent unwanted tooth rotation in the coronal plane.

Finite element analysis of the effects of mouthguard produced by combination of layers of different materials on teeth and jaw (다양한 물성을 혼용하여 제작된 구강보호장치가 치아 및 악골에 미치는 영향)

  • So, Woong-Seob;Lee, Hyun-Jong;Choi, Woo-Jin;Hong, Sung-Jin;Ryu, Kyung-Hee;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Purpose: The purpose of this study was to compare the stress distribution of teeth and jaw on load by differentiating property of materials according to each layer of widely used mouthguard. Materials and methods: A Korean adult having normal cranium and mandible was selected to examine. A customized mouthguard was constructed by use of DRUFOMAT plate and DRUFOMAT-TE/-SQ of Dreve Co. according to Signature Mouthguard system. The cranium was scanned by means of computed tomography with 1mm interval. It was modeled with CANTIBio BIONIX/Body Builder program and simulated and interpreted using Alter HyperMesh program. The mouthguard was classified as follows according to the layers. (1) soft guard (Bioplast)(SG) (2) hard guard (Duran)(HG) (3) medium guard (Drufomat)(MG) (4) soft layer + hard layer (SG + HG) (5) hard layer + soft layer (HG + SG) (6) soft layer + hard layer + soft layer (SG + HG + SG) (7) hard layer + soft layer + hard layer (HG + SG + HG) The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were oblique ($45^{\circ}$). The impact load was 800 N for 0.1 sec. The stress distribution was measured at maxillary teeth, TMJ and maxilla. The statistics were conducted using Repeated ANOVA and in case of difference, Duncan test was used as post analysis. Results: In teeth and maxilla, the mouthguard contacting soft layer of mandibular teeth presented lowest stress measure and, in contrast, in condyle, the mouthguard contacting hard layer of mandibular teeth presented lowest stress measure. Conclusion: For all impact directions, soft layer + hard layer + soft layer, the mouthguard with three layers which the hard layer is sandwiched between two soft layers, showed relatively even distribution of stress in impact.

Analysis of thermal changes in bone by various insertion torques with different implant designs (서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구)

  • Kim, Min-Ho;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Seok;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.168-176
    • /
    • 2011
  • Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.

A Study on Setup for Preliminary Decision Criterion of Continuum Rock Mass Slope with Fair to Good Rating (양호한 연속체 암반사면의 예비 판정기준 설정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • It can be observed that steep slopes ($65^{\circ}$ to $80^{\circ}$) consist of rock masses were kept stable for a long time. In rock-mass slopes with similar ground condition, steeper slopes than 1 : 0.5 ($63^{\circ}$) may be applied if the discontinuities of rock-mass slope are distributed in a direction favorable to the stability of the slope. In making a decision the angle of the slope, if the preliminary rock mass conditions applicable to steep slope are quantitatively setup, they may be used as guidance in design practice. In this study, the above rock mass was defined as a good continuum rock mass and the quantitative setup criterion range was proposed using RMR, SMR and GSI classifications for the purpose of providing engineering standard for good continuum rock mass conditions. The methods of study are as follows. The stable slope at steep slopes ($65^{\circ}$ to $80^{\circ}$) for each rock type was selected as the study area, and RMR, SMR and GSI were classified to reflect the face mapping results. The results were reviewed by applying the calculated shear strength to the stable analysis of the current state of rock mass slope using the Hoek-Brown failure criterion. It is intended to verify the validity of the preliminary criterion as a rock mass condition that remains stable on a steep slope. Based on the analysis and review by the above research method, it was analyzed that a good continuum rock mass slope can be set to Basic RMR ${\geq}50$ (45 in sedimentary rock), GSI and SMR ${\geq}45$. The safety factor of the LEM is between Fs = 14.08 and 67.50 (average 32.9), and the displacement of the FEM is 0.13 to 0.64 mm (average 0.27 mm). This can be seen as a result of quantitative representation and verification of the stability of a good continuum rock mass slope that has been maintained stable for a long period of time with steep slopes ($65^{\circ}$ to $80^{\circ}$). The setup guideline for a good continuum rock mass slope will be able to establish a more detailed setup standard when the data are accumulated, and it is also a further study project. If stable even on steep slopes of 1 : 0.1 to 0.3, the upper limit of steep slopes is 1 : 0.3 with reference to the overseas design standards and report, thus giving the benefit of ensuring economic and eco-friendlyness. Also, the development of excavation technology and plantation technology and various eco-friendly slope design techniques will help overcome psychological anxiety and rapid weathering and relaxation due to steep slope construction.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

The Effect of Preferential Purchase Policy for Technologically Developed Products on Growth of SMEs (기술개발제품 우선구매 제도가 중소기업의 성장에 미치는 영향)

  • Young-Jin Kim;Yong-Seok Cho;Woo-Hyoung Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.43-68
    • /
    • 2023
  • In this study, in relation to "Chapter 3 Support for Priority Purchase of Technology Development Products" of the 「Market Channel Support Act」, this study investigated the positive growth impact of technology development products subject to preferential purchase on small and medium sized enterprises. The data used for empirical verification is for 371 companies that obtained certification for technology development products subject to preferential purchase in 2016 and Data from SMEs were collected from 2017 to 2021, Sales, operating profit, and net profit was identified, and empirical verification. And conducted through statistical analysis to determine whether it had a positive effect on the growth factors of SMEs. In addition, data from 225 technology development product certification companies were collected, and empirical testing was conducted through t-test analysis on the change in growth factors before and after acquiring certification. As a result of statistical analysis, it was found that the total assets, certified sales, operating profit, and net profit, which are the growth factors of a company, are all positively affected according to the type of technology development product certification. However, in the case of authentication types, some authentications showed significant negative results. In addition, significant results were derived that after acquiring certification had a positive effect on growth factors than before acquiring certification. Consistent with this conclusion, I think that it is effective for technology development-based SMEs to enter the public procurement market and utilize the technology development product priority purchase policy for market exploitation and corporate growth. And the government should strengthen the market support policy to create demand so that SMEs can enter the procurement market and actively utilize the preferential purchase system, and come up with an improvement plan so that public institutions can actively utilize the preferential purchase system.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.