• Title/Summary/Keyword: FEM(finite element analysis)

Search Result 2,826, Processing Time 0.025 seconds

Finite element analysis of elastic property of concrete composites with ITZ

  • Abdelmoumen, Said;Bellenger, Emmanuel;Lynge, Brandon;Queneudec-t'Kint, Michele
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.497-510
    • /
    • 2010
  • For better estimation of elastic property of concrete composites, the effect of Interfacial Transition Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore, difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete composites with ITZ. The validity of the model has been verified by comparing the calculated elastic modulus with those obtained from other analytical and numerical models.

True Stress-True Strain Curve Fitting Methodology for Finite Element Analysis (유한요소해석을 위한 재료의 진응력-진변형률 커브 피팅 방법론)

  • Kim, Y.J.;Gu, G.H.;Seo, M.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.194-199
    • /
    • 2022
  • In finite element method (FEM) simulations, constitutive models are widely used and developed to represent a wide range of true stress-strain curves using a small number of modeling parameters. Nevertheless, many studies has been conducted to find a suitable constitutive model and optimal modeling parameters to represent experimentally obtained true stress-strain curves. Therefore, in this study, a new constitutive modeling approach using the combined Swift and Voce model is suggested, and confirmed through comparisons of the experimental results with the FEM simulation results.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

Development of new finite elements for fatigue life prediction in structural components

  • Tarar, Wasim;Scott-Emuakpor, Onome;Herman Shen, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.659-676
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop new finite elements for uniaxial and bending fatigue life prediction. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite elements for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure for each element in structural components. The performance of the fatigue finite elements is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.

Design Using Finite Element Analysis of a Switched Reluctance Motor for Electric Vehicle

  • Ohyama Kazuhiro;Nashed Maged Naguib F.;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • In this paper, a Switched Reluctance Motor (SRM) employed in an electric vehicle (EV) is designed using the finite element method (FEM). The static torque of the SRM is estimated through magnetic field analysis. The SRM temperature rise over operation time is estimated through heat transfer analysis. First, static torque and temperature rise over the time of 600W SRM is included in the experiment set, and are compared with the calculated results using the FEM under the same conditions. The validity of the magnetic field analysis and heat transfer analysis is verified by the comparisons. In addition, a 60 [kW] SRM employed in an EV, whose output characteristics are equal to a 1500 [cc] gasoline engine, is designed under magnetic field analysis and heat transfer analysis.

Finite Element Model for the Hydrodynamic Analysis in a River (하천에서의 동수력학적 유동해석을 위한 유한요소모형의 개발)

  • 한건연;이종태;김홍태
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.87-101
    • /
    • 1993
  • A finite element model RIV-FEM2 for the hydrodynamic study in a river is developed based on two-dimensional shallow water wave equation and dissipative Galerkin's method. RIV-FEM2 consists of pre-processing, analysis processing and post-processing. Pre- and analysis processing is programmed with Fortran-77 and post-processing with turbo-Pascal respectively. The model is tested with two dimensional problems, including flow through bends, bridges, and symmetric contraction. The two dimensional tests shows stable and efficient results for various situations. Applicability of the model is verified by applying to natural river. The model will provide a basic contribution to the hydrodynamic analysis in a river.

  • PDF

An effective solution of electro-thermo-structural problem of uni-axially graded material

  • Murin, J.;Kutis, V.;Masny, M.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.695-713
    • /
    • 2008
  • The aim of this contribution is to present a new link/beam finite element suitable for electrothermo-structural analysis of uni-axially graded materials. Continuous polynomial variation of geometry and material properties will be considered. The element matrix and relations for solution of Joule's heat (and its distribution to the element nodes) have been established in the sense of a sequence method of a coupled problem solution. The expression for the solution of nodal forces caused by a continuously distributed temperature field has also been derived. The theoretical part of this contribution is completed by numerical validation, which proves the high accuracy and effectiveness of the proposed element. The results of the performed experiments are compared with those obtained using the more expensive multiphysical link element and solid element of the FEM program Ansys. The proposed finite element could be used not only in the multiphysical analysis of the current paths and actuators but also in analysis of other 1D construction parts made of composite or uni-axially graded materials.

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Analysis and Design of Shoes Using Non-Linear Finite Element Method (비선형 유한요소법을 이용한 신발 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.195-205
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with air-cycled pump in the midsole. The golf shoes are modeled using the finite element method for better design by considering the configuration of the midsole and the outsole, which compose the golf shoes. Also the optimum size and shape of air-cycled pump in the midsole is examined. The values or standard human pressure for boundary conditions are adopted for the FEA(Finite Element Analysis). The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for the midsole and the outsole are obtained, respectively. It can be concluded that results obtained by FEM in the midsole and the outsole are different depending on the characteristic of elastomer The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.

Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine

  • Kim, Sung-Jin;Park, Eui-Jong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1628-1633
    • /
    • 2016
  • This paper derives an effective shape of the ferromagnetic pole pieces (low-speed rotor) for the reduction of transmission torque ripple in a magnetic-geared machine based on a Box-Behnken design (BBD). In particular, using a non-linear finite element method (FEM) based on 2-D numerical analysis, we conduct a numerical investigation and analysis between independent variables (selected by the BBD) and reaction variables. In addition, we derive a regression equation for reaction variables according to the independent variables by using multiple regression analysis and analysis of variance (ANOVA). We assess the validity of the optimized design by comparing characteristics of the optimized model derived from a response surface analysis and an initial model.