• Title/Summary/Keyword: FEA analysis

Search Result 1,391, Processing Time 0.032 seconds

Analytical Estimation of Inductance at Aligned and Unaligned Rotor Positions in a Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 회전자 정렬과 비정렬 위치에서의 인덕턴스 예측)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Flux linkage of phase windings or phase inductance is an important parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of inductance at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance at aligned and unaligned rotor positions is estimated by means of numerical method and magnetic equivalent circuit as well, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance computed by an FEA simulation.

Flux Linkage Estimation in a Switched Reluctance Motor Using a Simple Reluctance Circuit

  • Lee, Cheewoo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • Flux linkage of phase windings is a key parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of flux linkage at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear saturation in flux. Although several different approaches using a finite element analysis (FEA) or a curve-fitting tool have been employed to compute phase flux linkage [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase flux linkage at aligned and unaligned rotor positions is estimated by means of a reluctance network, and the proposed approach is analytically verified in terms of accuracy compared to FEA.

A Study on D.D.I. Load for Forming of the CNG Storage Vessel (CNG 저장용기의 성형을 위한 D.D.I. 하중에 관한 연구)

  • Lee, Hyun Woo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.629-637
    • /
    • 2013
  • In this study, a theoretical analysis method was suggested for predicting forming loads of continuous deep drawing and ironing processes (D.D.I. processes) by considering back tension and continuity equation, and FEA for D.D.I. processes was performed. Dimensions of a punch and a mold on the basis of design rules for a CNG storage vessel were applied for the analysis. To verify the suggested theoretical analysis, the results of theoretical analysis were compared with both those of FEA and experiments of previous studies. As the result of analysis, the values and tendencies of the loads predicted by the theoretical analysis were in agreement with those of FEA and the experiments. So, it is considered that the analysis suggested has reliability for predicting the forming loads of the continuous processes(deep drawing+ironing(1)+ironing(2)).

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition (지반조건에 따른 말뚝의 인발저항 평가를 위한 말뚝-지반 경계면 강도감소계수 고찰)

  • You, Seung-Kyong;Shin, Heesoo;Lee, Kwang-Wu;Park, Jeong-Jun;Choi, Choong-Lak;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2019
  • This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{inter}$) on pile-soil interface were applied to simulate appropriately the shear behavior at the pile-soil interface, and then the reliability of numerical analysis method was verified by comparison of FEA results and previous experimental research(You et al., 2018). In addition, a the deformation characteristics at the pile-soil interface and determination method of $R_{inter}$ value was laid out. The results showed that the FEA, based on the analytical model applied in this study simulates appropriately the characteristics of the pile-soil interface by pullout model test of pile. In order to apply the suggested $R_{inter}$ value, it is necessary to consider the condition of the relative density and the fines content in ground.

Development of 1-3 Piezocomposite Ultrasonic Transducers by means of the Finite Element Method (유한요소 해석법을 이용한 1-3형 압전복합체 초음파 트랜스듀서의 개발)

  • 이수성;김동현;한진호;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.274-281
    • /
    • 2004
  • In this study. a 1-3 piezo-composite single element ultrasonic transducer was designed with a commercial finite element analysis (FEA) code. PZf1ex and developed based on this design. Design with FEA could be performed overcoming many constraints of the typical theoretical method, and also was very practical. Validity of the design with the FEA was illustrated through experimental characterization of fabricated 1-3 piezo-composites and ultrasonic transducers, Through comparison with the result of the theoretical method. we confirmed the superiority of the design method using FEA.

Fatigue Characteristics and FEM Analysis of 18Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • 장경천;국중민;최병희;정재강;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.136-142
    • /
    • 2004
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue lift of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue lift on base metal specimens or solution annealed specimens showing that the fatigue life was almost the same. The maximum stresses of X, Y, and Z axis direction showed about 2.12${\times}$10$^2$MPa, 4.40${\times}$10$^2$MPa and 1.32${\times}$10$^2$MPa respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about 3.5∼10% than that of the experiment result showing that the longer fatigue crack length, the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

  • PDF

Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.849-866
    • /
    • 2012
  • Single span historic bridges often contain non-prismatic members identified with a varying depth along their span lengths. Commonly, the symmetric parabolic height variations having the constant haunch length ratio of 0.5 have been selected to lower the stresses at the high bending moment points and to maintain the deflections within the acceptable limits. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces (FEFs) and fixed-end moments (FEMs) becomes a complex problem. Therefore, this study aimed to investigate the behavior of non-prismatic beams with symmetrical parabolic haunches (NBSPH) having the constant haunch length ratio of 0.5 using finite element analyses (FEA). FEFs and FEMs due to vertical loadings as well as the stiffness coefficients and the carry-over factors were computed through a comprehensive parametric study using FEA. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. Despite the robustness of FEA, the generation of FEFs and FEMs using the nodal outputs of the detailed finite element mesh still remains an intricate task. Therefore, this study advances to propose effective formulas and dimensionless estimation coefficients to predict the FEFs, FEMs, stiffness coefficients and carry-over factors with reasonable accuracy for the analysis and re-evaluation of the NBSPH. Using the proposed approach, the fixed-end reactions due to vertical loads, and also the stiffness coefficients and the carry-over factors of the NBSPH can be determined without necessitating the detailed FEA.

A Study on the FEM Analysis of Maraging Steel according to Nb content (Nb 함량에 따른 마르에이징강의 유한요소해석에 관한 연구)

  • Choi, Byung-Ky;Choi, Byung-Hui;Kwon, Tack-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.1-8
    • /
    • 2005
  • Effects of Nb(Niobium) contents and solution annealing on the strength and fatigue life of 18%Ni maraging steel commonly using in aircraft, space field, nuclear energy, and vehicle etc. were investigated. Also the fatigue life stress intensity factor were compared experiment result and FEA(finite element analysis) result. The more Nb content, the higher or the lower fatigue life on base metal specimens or solution annealed specimens showing that the fatigue lift was almost the same. The maximum stresses of X, Y, and Z axis direction showed about $2.12{\times}10^2MPa,\;4.40{\times}10^2MPa\;and\;1.32{\times}10^2MPa$ respectively. The Y direction stress showed the highest because of the same direction as the loading direction. The fatigue lives showed about 7% lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5{\sim}10%$ than that of the experiment result showing that the longer fatigue crack length the higher error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

Failure Behavior of T-joint Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 T-joint 배관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.80-87
    • /
    • 2014
  • The pipelines are apt to erosion or corrosion because of the high-speed flow of water and steam with high temperatures or high pressures. This study was carried out a finite element analysis (FEA) and an experimental for the fracture behavior of T-joint pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion and corrosion of the metal. The configurations of the eroded area included an eroded ratio of d/t=0.80~0.963 and an eroded length of l=25 mm, 50 mm, and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using FEA, which accurately simulates failure behaviors. In regards to the relationship between pressure and eroded, the criterion that indicates what can be used safely under operating pressure and design pressure were obtained from FEA. The FEA results were in relatively good agreement with that of the experiment.