Browse > Article
http://dx.doi.org/10.12814/jkgss.2019.18.2.045

A Study on Strength Reduction Factor of Pile-soil Interface for Evaluation of Pile Pullout Resistance by Soil Condition  

You, Seung-Kyong (Dept. of Civil Engineering, Myongji College)
Shin, Heesoo (Institute of Technology Research and Development, UCI Tech co. Ltd.)
Lee, Kwang-Wu (Infra safety Institute, Korea Institute of Civil engineering and building Technology)
Park, Jeong-Jun (Incheon Disaster Prevention Research Center, Incheon National University)
Choi, Choong-Lak (Geotechnical Engineering Depatment, Pyunghwa Engineering Consultants)
Hong, Gigwon (Institute of Technology Research and Development, Korea Engineering & Construction)
Publication Information
Journal of the Korean Geosynthetics Society / v.18, no.2, 2019 , pp. 45-54 More about this Journal
Abstract
This paper describes the results of finite element analysis (FEA), in order to investigate a characteristics of pile pullout behavior according to the conditions of the relative density and fines content in original ground. In the FEA, a boundary elements and strength reduction factors ($R_{inter}$) on pile-soil interface were applied to simulate appropriately the shear behavior at the pile-soil interface, and then the reliability of numerical analysis method was verified by comparison of FEA results and previous experimental research(You et al., 2018). In addition, a the deformation characteristics at the pile-soil interface and determination method of $R_{inter}$ value was laid out. The results showed that the FEA, based on the analytical model applied in this study simulates appropriately the characteristics of the pile-soil interface by pullout model test of pile. In order to apply the suggested $R_{inter}$ value, it is necessary to consider the condition of the relative density and the fines content in ground.
Keywords
Pile pullout resistance; Finite element analysis (FEA); Pile-soil interface; Strength reduction factor; Skin friction;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Benz, T. (2007), Small-Strain Stiffness of Soils and its Numerical Consequences, Ph.D. Thesis, University of Stuttgart.
2 Cho, S. H. and Kim, H. M. (2010), "Characteristics on Pullout Behavior of Belled Tension Pile in Sandy Soils", Journal of the Korea Academia-Industrial cooperation Society, Vol.11, No.9 pp.3599-3609. (in Korean with English summary)   DOI
3 Das, B. M. and Seeley, G. R. (1975), "Uplift Capacity of Buried Model Piles in Sand", Journal of the Geotechnical Engineering Division, Vol.101, Issue 10, pp.1091-1094.   DOI
4 Hong, G., You, S. K., Shin, H., Lee, K. and Choi, C. (2019), "A Study on Numerical Analysis for Pullout Behavior Prediction of Pile", 2019 Spring Geosynthetics Conference, Korea, pp.108-109. (in Korean)
5 Hong, W. P., Yea, G. G. and Lee, J. H. (2005), "Evaluation of skin friction on large drilled shaft", Journal of the Korean geotechnical society, Vol.21, No.1, pp.93-103. (in Korean with English summary)
6 Hong, W., Lee, J., and Chai, S. (2008), "Bearing Capacity of SDA Augered Piles in Various Grounds Depending on Water-cement Ratio of Cement Milk", Journal of Korean Geotechnical Society, Vol.24, No.5, pp.37-54. (in Korean with English summary)
7 Lee, H. J. and Kim, H. T. (2006a), "Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts", Journal of The Korean Society of Civil Engineers, Vol.26, No.6c, pp.395-406. (in Korean with English summary)
8 Lee, H. J. and Kim, H. T. (2006b), "Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts", Journal of The Korean Society of Civil Engineers, Vol.26, No.6c, pp.407-419. (in Korean with English summary)
9 Lee, S. J. (2013), "Analysis of Diameter Effects on Skin Friction of Drilled Shafts in Sand", Journal of the Korean geotechnical society, Vol.29, No.1, pp.161-170. (in Korean with English summary)   DOI
10 Lim, H., Park, Y., and Park, J. (2002), "Investigation of Characteristics and Suggestion of Evaluation Formulae for Skin Resistance of SIP", Journal of the Korean Geoenvironmental Society, Vol.3, No.2, pp.15-21. (in Korean with English summary)
11 Lim, Y. J. and Seo, S. H. (2002), "Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils", Journal of the Korean Geotechnical Society, Vol.18, No.4, pp.105-117. (in Korean with English summary)
12 Meyerhof, G. G. (1959), "Compaction of Sands and Bearing Capacity of Piles", J. S. Mech. Fdtn. Div, ASCE, pp.1-29.
13 Reese, L. C. and O'Neill, M. W. (1988), Drilled Shafts: Construction and Design, Publication No. HI-88-042, Federal Highway Administration (FHWA).
14 Meyerhof, G. G. (1976), "Bearing Capacity and Settlement of Pile Foundations", Journal of Geotechnical Engineering, ASCE, 102, No.GT-3, pp.197-228.
15 Meyerhof, G. G. and Adams, J. I. (1968), "The Ultimate Uplift Capacity of Foundation", Canadian Geotechnical. Journal, Vol.5, No.4, pp.225-244.   DOI
16 O'Neill, M. W. and Reese, L. C. (1999), "Drilled Shafts: Construction Procedures and Design Methods", Publication No. FHWA-IF-99-025, Federal Highway Administration (FHWA).
17 Schanz, T., Verrmeer, P. A., and Bonnier, P. G. (1999), "The Hardening Soil Model: Formulation and Verification", Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp.1-16.
18 Yoon, M. S., Lee, C. K. and Kim, M. H. (2013), "Evaluation of Unit Side Resistance of Drilled Shafts by Revised SPT N Value", Journal of the Korean geotechnical society, Vol.29, No.12, pp.5-10. (in Korean with English summary)   DOI
19 You, S. K., Hong, G., Jeong, M., Shin, H., Lee, K. W. and Ryu, J. (2018), "Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts", Journal of the Korean Geotechnical Society, Vol.34, No.4, pp.37-47. (in Korean with English summary)   DOI
20 You, S. K., Shin, H., Lee, K. W., Park, J. J., Choi, C. L. and Hong, G. (2019), "Evaluation on applicability of finite element analysis in model test of pile pullout", Journal of the Korean Geosynthetics Society, Vol.18, No.2, Accepted. (in Korean with English summary)