• 제목/요약/키워드: FEA analysis

검색결과 1,381건 처리시간 0.022초

FEA(Finite Element Analysis)를 이용한 CC(Contour Crafting)의 노즐모양에 대한 연구 (Effect of Orifice Shape in Contour Crafting using Finite-Element Analysis : A Study of Extrusion and Deposition Mechanisms)

  • 권홍규;김용범
    • 대한안전경영과학회지
    • /
    • 제8권4호
    • /
    • pp.91-107
    • /
    • 2006
  • 본 논문은 Contour Crafting(CC) 프로세스의 압출과 적층 단계에서 물질 흐름의 형태를 연구하기 위한 실험과 모델링을 보여준다. 특히, 실험재료로써 진흙을 이용한 압출과 적층 메커니즘을 이해하기 위하여 기초적인 유한성분분석(FEA)을 실행하였다. FEA 시뮬레이션을 이용한, CC의 성능에 있어서 압출구멍의 기하학적인 효과에 대한 분명하고 기본적인 이해를 하게 되었다. 네모난 형상이 원하는 외부 표면특성을 만드는 것뿐만 아니라, 그리고 층간에 최적의 융합을 수행하는데 있어서 가장 적합하다는 것을 알아냈다. 우리의 실험은 이 결과들을 증명한다.

Finite element simulation for steel tubular members strengthened with FRP under compression

  • El-Kholy, Ahmed M.;Mourad, Sherif A.;Shaheen, Ayman A.;Mohamed, Yomna A.
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.569-583
    • /
    • 2019
  • Tubular steel sections are widespread all over the world because of their strength and aesthetic appearance. Tubular steel members may exhibit local buckling such as elephant foot or overall buckling under extreme compression load. Recently, external bonding of fiber reinforced polymers (FRP) sheets for strengthening these members has been explored through experimental research. This paper presents three-dimensional nonlinear finite element analysis (FEA) to investigate the structural behavior of strengthening tubular steel members with FRP against local and overall buckling phenomena. Out-of-roundness and out-of-straightness imperfections were introduced to the numerical models to simulate the elephant foot and overall buckling, respectively. The nonlinear analysis preferences such as the integration scheme of the shell elements, the algorithm for solution of nonlinear equations, the loading procedure, the bisection limits for the load increments, and the convergence criteria were set, appropriately enough, to successfully track the sophisticated buckling deformations. The agreement between the results of both the presented FEA and the experimental research was evident. The FEA results demonstrated the power of the presented rigorous FEA in monitoring the plastic strain distribution and the buckling phenomena (initiation and propagation). Consequently, the buckling process was interpreted for each mode (elephant foot and overall) into three sequential stages. Furthermore, the influence of FRP layers on the nonlinear analysis preferences and the results was presented.

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

Development of Analytical Models for Switched Reluctance Machine and their Validation

  • Jayapragash, R.;Chellamuthu, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.990-1001
    • /
    • 2015
  • This paper presents analysis of Switched Reluctance Machine (SRM) using Geometry Based Analytical Model (GBAM), Finite Element Analysis (FEA) and Fourier Series Model (FSM) with curve fitting technique. Further a Transient Analysis (TA) technique is proposed to corroborate the analysis. The main aim of this paper is to give in depth procedure in developing a Geometry Based Analytical Model of Switched Reluctance Machine which is very accurate and simple. The GBAM is developed for the specifications obtained from the manufacturer and magnetizing characteristic of the material used for the construction. Precise values of the parameters like Magneto Motive Force (MMF), flux linkage, inductance and torque are obtained for various rotor positions taking into account the Fringing Effect (FE). The FEA model is developed using MagNet7.1.1 for the same machine geometry used in GBAM and the results are compared with GBAM. Further another analytical model called Fourier Series Model is developed to justify the accuracy of the results obtained by the methods GBAM and FEA model. A prototype of microcontroller based SRM drive system is constructed for validating the analysis and the results are reported.

마이크로 모터의 자동화된 FEA 시뮬레이션 (Automated FEA Simulation of Micro Motor)

  • Lee Joon-Seong
    • 한국시뮬레이션학회논문지
    • /
    • 제11권3호
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

전자식 조향 장치용 매입형 영구자석 동기전동기의 Skew를 고려한 파라미터 산정 (Calculation of Parameters Considering Skew in EPS Interior Permanent Magnet Synchronous Motor)

  • 이수진;홍정표
    • 전기학회논문지
    • /
    • 제62권10호
    • /
    • pp.1403-1407
    • /
    • 2013
  • This paper presents the method to calculate the motor parameters considering skew in EPS Interior Permanent Magnet Synchronous Motor (IPMSM). The skew is applied to stator or rotor by general technology used for design of reducing noise and vibration in motor. The characteristics analysis of motor including the skew is mostly used by 3D Finite Element Analysis (FEA), though, this analysis is a very time-consuming to perform. Besides, The reliability lacks due to the considerable change of motor characteristics according to the number of elements in 3D FEA. However, analysis time and effort can be saved by characteristic analysis considering skew using 2D FEA. Therefore, in this paper, a quick and accurate method for the calculations of motor parameters considering skew is suggested. The proposed method is verified by the comparison of calculated and experimental results.

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

TiC-SKH51 금속 복합재를 이용한 공작기계 주축 진동 억제에 관한 연구 (Suppression of Machine Tool Spindle Vibration by using TiC-SKH51 Metal Matrix Composite)

  • 배원준;김성태;김양진;이상관
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.262-267
    • /
    • 2020
  • 고속 가공과 저중량 설계에 대한 수요가 증가함에 따라, 공작기계 주축의 진동 발생 가능성이 증가하고 있다. 또한 초정밀 가공에서 주축의 진동은 공작물 표면 형상에 큰 영향을 끼치게 된다. 다양한 가공 공정의 가공 정밀도를 향상시키기 위해, 공작기계 주축 진동 문제를 해결하여야 한다. 이 논문에서, 공작기계 주축의 진동 억제를 위해 TiC-SKH51 금속 기지 복합재가 사용되었다. TiC-SKH51 복합재의 동적 특성을 확인하기 위해 충격 망치 시험을 수행하였다. FEA의 모드 분석 결과와 충격 망치 시험 결과를 비교하여 FEA의 신뢰성을 확인한 후, 공작기계 주축 모델의 해석이 실행되었다. FEA 결과로부터 진동 발생 억제를 위해 TiC-SKH51 복합재를 적용한 공작기계 주축이 사용될 수 있음을 확인하였다.

FCEV Turbo Blower 의 동특성 해석 (Dynamic Analysis of FCEV Turbo Blower)

  • 육지용;양현섭;이창하;조경석;박용선;권혁률
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.599-606
    • /
    • 2010
  • This paper presents dynamic analysis of FCEV (Fuel Cell Electric Vehicle) Turbo Blower. To analyze the dynamic characteristics of Turbo Blower, finite element model which consists of solid elements is constructed. Evaluation of stress for safety of rotor sleeve due to centrifugal force, Shrink fit analysis in maximum rotation speed is performed. Rotor dynamic analysis of Turbo blower is conducted using Campbell diagram and FEA (Finite element analysis) results are compared with experimental results to evaluate of validity of finite element model. To evaluate of Structure vibration characteristics, Modal analysis and forced vibration analysis are performed through FEA and experiment.

  • PDF

고무 면진 베어링 몰딩과정의 열전달 해석 및 실험 (An Experimental Study of Heat Transfer Analysis in Molding the Rubber Bearing for Seismic Isolator)

  • 강경주;문병영;강범수;김계수;정경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.275-280
    • /
    • 2001
  • Seismic isolator system is one of the most widely used base isolation system in order to control the vibration of structure against earthquake excitation. The evaluation of vulcanization time in molding the rubber bearing is very important for both proper ability of isolator and efficiency of manufacture. This paper deals with experimental measurement of temperature of isolator with senor inside in it, and compared with the result of FEA in order to evaluate the vulcanization time. Properties of rubber bearing which is used in the FEA are obtained by controlling the specific heat of rubber. With the obtained properties of rubber, the isolator is analysed by FEA. As a result, an appropriate analytical vulcanization time is obtained. This time is regarded as an appropriate temperature, which is used to effective manufacture.

  • PDF