• Title/Summary/Keyword: FE-simulations

Search Result 242, Processing Time 0.022 seconds

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method (유한요소법을 이용한 홀 확장 잔류응력 해석)

  • Kim, Cheol;Yang, Won-Ho;Heo, Seong-Pil;Jeong, Gi-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are expanding rate, inserting direction of mandrel, material properties dtc. Despite its importance to aerospace industiries, little attention has been devoted to the accurate modeling of the process. In this paper, three-dimensional finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress. To prove the results of FE analysis, the residual strain was measured by strain gage in cold expansion test. Maximum compressive residual stress could be increase about 7 percentage using the 2-step cold expansion method.

Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model (3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.

Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis (유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석)

  • Kim, Ju Hee;Yoo, Sam Hyeon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.637-647
    • /
    • 2014
  • In pressurized water reactors, the upper head of the reactor pressure vessel (RPV) contains numerous control rod drive mechanism (CRDM) nozzles. These nozzles are fabricated by welding after being inserted into the RPV head with a room temperature shrink fit. The tensile residual stresses caused by this welding are a major factor in primary water stress corrosion cracking (PWSCC). Over the last 15 years, the incidences of cracking in alloy 600 CRDM nozzles have increased significantly. These cracks are caused by PWSCC and have been shown to be driven by the welding residual stresses and operational stresses in the weld region. Various measures are being sought to overcome these problems. The defects resulting from the welding process are often the cause of PWSCC acceleration. Therefore, any weld defects found in the RPV manufacturing process are immediately repaired by repair welding. Detailed finite-element simulations for the Korea Nuclear Reactor Pressure Vessel were conducted in order to predict the magnitudes of the repair weld residual stresses in the tube materials.

Iteration-based Array Analysis for Conceptual Design of Active Sonar Arrays (능동 소나 배열의 개념 설계를 위한 반복법 기반 배열 해석)

  • Noh, Eunghwy;Chun, Wonjong;Ohm, Won-Suk;Been, Kyounghun;Moon, Wonkyu;Chang, Woosuk;Yoon, Hongwoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-233
    • /
    • 2017
  • The array equations are commonly used for analysis and conceptual design of active sonar projector arrays. Calculation of the radiation impedance matrix poses a major computational bottleneck for the solution of the array equations, which leads to a dramatic increase in computational load as the number of constituent transducers increases. Here, we propose an iteration-based solution method that does not require the calculation of the radiation impedance matrix, as a computationally efficient alternative to the status quo. The validity of the iteration-based analysis is judged against the full finite-element analysis that includes the entire array as well as the medium. The array equations for the 1/3-sector of a cylindrical array comprised of 48 Tonpilz transducers are augmented by the lumped element models, and are solved iteratively for the acoustic and electro-mechanical characteristics. The iteration-based analysis exhibits rapid convergence and accuracy comparable with the FE analysis. Simulations also reveal that the acoustic coupling between transducers has more pronounced effects on the electro-mechanical characteristics of individual transducers than the acoustic performance of the array.

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect (단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측)

  • Kim, Dongwook;Bang, Sungsik;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1239-1249
    • /
    • 2013
  • In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

Development and performance evaluation of SB3-level roadside barrier for highway transition zone (고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가)

  • Lee, Jungwhee;Cho, Jong-Seok;Lee, Jae-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.

Study on the Failure Mechanism of a Chip Resistor Solder Joint During Thermal Cycling for Prognostics and Health Monitoring (고장예지를 위한 온도사이클시험에서 칩저항 실장솔더의 고장메커니즘 연구)

  • Han, Chang-Woon;Park, Noh-Chang;Hong, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.799-804
    • /
    • 2011
  • A thermal cycling test was conducted on a chip resistor solder joint with real-time failure monitoring. In order to study the failure mechanism of the chip resistor solder joint during the test, the resistance between both ends of the resistor was monitored until the occurrence of failure. It was observed that the monitored resistance first fluctuated linearly according to the temperature change. The initial variation in the resistance occurred at the time during the cycle when there was a decrease in temperature. A more significant change in the resistance followed after a certain number of cycles, during the time when there was an increase in the temperature. In order to explain the failure patterns of the solder joint, a mechanism for the solder failure was suggested, and its validity was proved through FE simulations. Based on the explained failure mechanism, it was shown that prognostics for the solder failure can be implemented by monitoring the resistance change in a thermal cycle condition.