• Title/Summary/Keyword: FE-simulation

Search Result 727, Processing Time 0.032 seconds

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Study on the Simulation of Crud Formation using Piping Materials of Nuclear Power Plant in High Temperature Water (원자력 발전소 배관재를 이용한 고온 수화학 조건에서의 방사화 부식생성물 모사에 관한 연구)

  • Kim Sang Hyun;Kim In Sup;Lee Kun Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.31-40
    • /
    • 2005
  • High temperature - high pressure apparatus was developed to simulate nickel fewite corrosion products which were main compositions of the radioactive crud in the nuclear power plant. Corrosion product similar to the crud was obtained by a tube accumulator system. Nickel alloy (Inconel 690) and carbon steel (SA106 Gr. C) were corroded at 270 $\^{circ}C$ in the corrosion product generator. Ni ions and Fe ions dissolved by corrosion reaction were able to be transported to the accumulator because the crud generation mechanism was the solubility change with temperature. To evaluate the properties of simulated corrosion products, scanning electron microscope (SEM) observation and EDAX analysis were performed. SEM observation of corrosion product showed the needlelike or crystal structure of oxide depending on precipitating location. The crystal oxide was the nickel ferrite, which was similar to the crud in nuclear power plants.

  • PDF

A Study on the Durability and Running Stability Evaluation of the Korean PRT (한국형 소형궤도차량(PRT)의 내구성 및 주행안정성 평가 연구)

  • Cho, Jeonggil;Kim, Junwoo;Kim, Hyuntae;Koo, Jeongseo;Kang, Seokwon;Jeong, Raggyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.50-58
    • /
    • 2014
  • The PRT(Personal Rapid Transit) system is highly interested to meet a need for demand-responsive transport service and increasing demands of traffic in Korea recently. And it is being spotlighted as an eco-friendly transportation system. For these reasons, researches on the PRT system are actively undergoing in Korea. In this study, we evaluated the static structural and fatigue strengths based on ASCE-APM standards and ERRI B 12/RP 17 by means of FE simulation. We also evaluate the running stability by multi-body dynamic analyses and the rollover safety by a theoretical static stability factor according to the road modeling scenarios for the PRT system. From the results of this study, we confirmed the durability and running stability of the Korean PRT under development.

Economic Evaluation of Liquid Air Energy Storage (LAES) System (액화 공기 에너지 저장 기술(LAES)의 경제성 분석)

  • Ko, Areum;Park, Sung-Ho;Ryu, Ju-Yeol;Park, Jong-Po
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Liquid air energy storage (LAES) using gas liquefaction has attracted considerable attention because of its mature technology, high energy density, few geographical constraints, and long life span. On the other hand, LAES has not yet been commercialized and is being developed recently. Therefore, few studies have performed an economic analysis of LAES. In this study, the levelized cost of electricity was calculated and compared with that of other energy storage systems. As a result, the levelized cost of electricity of LAES was $371/MWh. This is approximately $292/MWh, $159/MWh, $118/MWh, and $3/MWh less than that of the LiCd battery, VRFB battery, Lead-acid battery, and NaS battery. In addition, the cost was approximately $62/MWh and $195/MWh more than that of Fe-Cr flow battery and PHS. Sensitivity analysis of the levelized cost of electricity according to the main economic factors was performed, and economic uncertainty analysis was performed through a Monte-Carlo simulation. The cumulative probability curve showed the levelized cost of electricity of LAES, reflecting price fluctuations in the air compressor cost, electricity cost, and standing reserve hourly fee.

Equilibrium Concentration of Radionuclides in Cement/Groundwater/Carbon Steel System

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.127-137
    • /
    • 1997
  • Equilibrium concentrations of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment while it almost entirely exists as the precipitate of Fe(OH)$_3$(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amount of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements cesium, strontium, cobalt nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system.

  • PDF

Isolation of Microcystin-LR and Its Potential Function of Ionophore

  • Kim, Gilhoon;Han, Seungwon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • The microcystin is a cyclic heptapeptide from metabolites of cyanobacteria in the genera mycrocystis, anabaeba as a result of eutrophication. It has been known that microcystin-LR is a potent inhibitor of the catalytic subunits of protein phosphatase-1 (PP-1) as well as powerful tumor promoter. The active site of microcystin actually has two metal ions $Fe^{2+}/Zn^{2+}$ close to the nucleophilic portion of PP-1-microcystin complex. We report the isolation and purification of this microcystin-LR from cyanobacteria (blue-green algae) obtained from Daechung Dam in Chung-cheong Do, Korea. Microcystin-LR was extracted from solid-phase extraction (SPE) sample preparation using a CN cartridge. The cyanobacteria extract was purified to obtain microcystin-LR by HPLC method and identified by LC/MS. The detail structural studies that can elucidate the possible role of monovalent and divalent metal ions in PP-1-microcystin complexation were carried out by utilizing molecular dynamics. Conformational changes in metal binding for ligands were monitored by molecular dynamic computation and potential of mean force (PMF) using the method of the free energy perturbation. The microcystin-metal binding PMF simulation results exhibit that microcystin can have very stable binding free energy of -10.95 kcal/mol by adopting the $Mg^{2+}$ ion at broad geometrical distribution of $0.5{\sim}4.5{\AA}$, and show that the $K^+$ ion can form a stable metal complex rather than other monovalent alkali metal ions.

A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution (미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석)

  • Jeong Ho-Seung;Cho Jong-Rae;Park Hee-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

ALE Finite Element Analysis of the WIG Craft under the Water Impact Loads (ALE 유한 요소법을 적용한 위그선의 착수하중 해석)

  • Lee, Bok-Won;Kim, Chun-Gon;Park, Mi-Young;Jeong, Han-Koo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1082-1088
    • /
    • 2007
  • Demand for high speed sea transportation modes has been increased dramatically last few decades. The WIG(Wing-in-ground effect) is considered as next generation maritime transportation system. In the structural design of high speed marine vessels, an estimation of water impact loads is essential. The dynamic structural responses of the WIG excited by the water impact loads may bring an important contribution to their damage process. The work presented in this paper is focused on the numerical simulation of the water impact on the WIG craft when it lands. It is aimed to study the structural responses of the WIG craft subjected to the water impact loads. The Arbitrary Lagrangian-Eulerian (ALE) finite element method is used to simulate the water impact of the WIG craft during a landing phase. A full 3D shell element is used to model the WIG craft in carbon composites, and a developed FE model is used to investigate the effect of the water impact loads on the structural responses of the WIG craft. In the analysis, two different landing scenarios are considered and their effects on the structural responses are investigated.

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.