A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석

  • Published : 2005.11.01

Abstract

The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

Keywords

References

  1. N. Srinivasan, Y. V. R. K. Prasad, 'Hot working characteristics of nimonic 75, 80A and 90 superalloys : a comparison using processing maps', Journal of Materials Processing Technology, Vol. 51, PP. 171-192, 1995 https://doi.org/10.1016/0924-0136(94)01602-W
  2. 염종택, 박노광, '해머 단조된 Alloy 718 디스크의 결정립 분포 해석', 한국소성가,공학회지, Vol. 6, No. 3, pp. 250-256, 1997
  3. 최민식, 강범수, 염종택, 박노광, '유한요소법을 이용한 Inconel 718의 열간단조공정시동적 재결정거동 예측', 한국소성가공학회지, Vol. 35, No. 6, pp. 197-206, 1998
  4. 염종택, '유한요소법을 이용한 단조공정시 조직 예측기법의 적용 사례', 단조심포지엄, 2001
  5. N. K. Park, I. S. Kim, Y. S. Na, J. T. Yeom, 'Hot forging of a nickel-base superalloy, Journal of Materials Processing Technology', 111. pp. 98-102, 2001
  6. S. M. Roberts, C. A. Walsh, R. C. Reed, C. A. Dandre, J. P. Lewis, R. W. Evans, 'Nickel-base superalloy forging for gas turbine applications: Process model, microstructural model and validation', Metal Forming 2000, ISBN 90-5809-157-0
  7. 정호승, 조종래, 차도진, 배원병, '금형강의 동적 및 정적 재결정 거동과 미세조직 변화예측에 관한 연구', 한국소성가공학회지, Vol. 10, No. 4, pp. 338-346, 2001
  8. J. R. Cho, W. B. Bae, W. J. Hwang, 'A study of the hot deformation behaviour and dynamic recrystallzation of Al-5wt.%Mg alloy', Journal of Materials Processing Technology, Vol. 118, pp. 356-361, 2001 https://doi.org/10.1016/S0924-0136(01)00978-5
  9. 왕지석, 박태인, '전기 업셋팅 가공시의 열탄소성 해석에 관한 연구', 한국박용기관학회지, Vol. 18, No. 4, pp. 423-430, 1994
  10. D. K Kim, D. Y. Kim, S. H Ryu, D. J Kim, 'Application of nimonic 80A to the forging of an exhaust valve head', Journal of Materials Processing Technology, Vol. 113, pp. 148-152, 2001 https://doi.org/10.1016/S0924-0136(01)00700-2
  11. 박종진, 황한섭, 이상주, 홍승찬, 임성환, 이경섭, 이경종, '로워암 커넥터 열간단조 공정의 유한요소해석 및 미세조직 예측', 대한기계학회논문집 A권, Vol. 27, No. 7, pp. 1243-1250, 2003
  12. N. Bontcheva and G. Petzov, 'Microstructure evolution during metal forming processes', Computational Materials Science, Volume 28, pp. 563-573, 2003 https://doi.org/10.1016/j.commatsci.2003.08.014
  13. G. Kugler and R. Turk, 'Modeling the dynamic recrystallization under multi-stage hot deformation', Acta Materialia, Volume 52, pp. 4659-4668, 2004 https://doi.org/10.1016/j.actamat.2004.06.022
  14. 정호승, 조종래, 박희천, '초내열합금 Nimonic 80A의 미세조직 변화에 대한 연구', 한국소성가공학회 춘계학술대회논문집, pp. 174-177, 2004