DOI QR코드

DOI QR Code

Isolation of Microcystin-LR and Its Potential Function of Ionophore

  • Kim, Gilhoon (Department of Applied Chemistry, Hanyang University) ;
  • Han, Seungwon (Department of Applied Chemistry, Hanyang University) ;
  • Won, Hoshik (Department of Applied Chemistry, Hanyang University)
  • Received : 2015.07.28
  • Accepted : 2015.09.27
  • Published : 2015.10.10

Abstract

The microcystin is a cyclic heptapeptide from metabolites of cyanobacteria in the genera mycrocystis, anabaeba as a result of eutrophication. It has been known that microcystin-LR is a potent inhibitor of the catalytic subunits of protein phosphatase-1 (PP-1) as well as powerful tumor promoter. The active site of microcystin actually has two metal ions $Fe^{2+}/Zn^{2+}$ close to the nucleophilic portion of PP-1-microcystin complex. We report the isolation and purification of this microcystin-LR from cyanobacteria (blue-green algae) obtained from Daechung Dam in Chung-cheong Do, Korea. Microcystin-LR was extracted from solid-phase extraction (SPE) sample preparation using a CN cartridge. The cyanobacteria extract was purified to obtain microcystin-LR by HPLC method and identified by LC/MS. The detail structural studies that can elucidate the possible role of monovalent and divalent metal ions in PP-1-microcystin complexation were carried out by utilizing molecular dynamics. Conformational changes in metal binding for ligands were monitored by molecular dynamic computation and potential of mean force (PMF) using the method of the free energy perturbation. The microcystin-metal binding PMF simulation results exhibit that microcystin can have very stable binding free energy of -10.95 kcal/mol by adopting the $Mg^{2+}$ ion at broad geometrical distribution of $0.5{\sim}4.5{\AA}$, and show that the $K^+$ ion can form a stable metal complex rather than other monovalent alkali metal ions.

Keywords

References

  1. K. S. Cho, B. C. Kim, W. M. Hea, and S. J. Cho, Kor. J. Limnology 23, 179 (1989)
  2. L. A. Lawton and G. A. Codd, J. Inst. W. E. Management 5, 460 (1991)
  3. M. Schwimmer, D. Schwimmer, and D. F. Jacson, A. M. Environment; syracuse Univ. 358 279 (1968)
  4. S. C. Yoon, K. Y. Park, and D. J. Pyo, J. Kor. Chem. Soc. 42, 51 (1998)
  5. J. Dunn, Brit. Med. J. 312, 1183 (1996)
  6. A. Sandstrm, J. Tox. 28, 535 (1990) https://doi.org/10.1016/0041-0101(90)90297-K
  7. D. F. Mierke, S. R.Bohner, G. Muller, and L. Moroder, Biopolymers 36, 811 (1995) https://doi.org/10.1002/bip.360360613
  8. R. Matsushima, S. Yoshizawa, M. F. Watanabe, K. L Harada, M. Purusawa, W. W. Carmichael, and H. Fujiki, Bio. Biophys. Res. Commun. 171, 867 (1990) https://doi.org/10.1016/0006-291X(90)91226-I
  9. R. Matsushima, Ohta, T. Nishwakim, S. Suganumaa, M. Kohyama, K. Ishikawa and T. Fujiki, H. J. Center Res. Clin. Oncol. 118, 420 (1992) https://doi.org/10.1007/BF01629424
  10. R. D. Storner, Toxicon. 27, 825 (1989) https://doi.org/10.1016/0041-0101(89)90051-2
  11. B. C. Nicolson, Water, Res. 28, 1297 (1994) https://doi.org/10.1016/0043-1354(94)90294-1
  12. J. Eur. Biochem. 258, 3012312 (1998)
  13. J. Schripsema and D. Dagnino, Magn. Reson. Chem. 40, 614-617 (2002) https://doi.org/10.1002/mrc.1059
  14. D. J. Pyo and H. D. Shin, J. Kor. Chem. Soc. 45, No (2001)
  15. T. J. Marrone and K. M. Merz, J. Am. Chem. Soc. 114, 7542 (1992) https://doi.org/10.1021/ja00045a030
  16. T. J. Marrone and K. M. Merz, J. Am. Chem. Soc. 117, 779 (1995) https://doi.org/10.1021/ja00107a022
  17. S. A. Shenolikar, Rev. Cell. Biol. 10, 55 (1994) https://doi.org/10.1146/annurev.cb.10.110194.000415
  18. M. Craig, H. A. Luu, T. L. McCready, D. Williams, R. J. Andersen, and C. F. B. Holmes, Biochem. Cell Biol. 74, 569 (1996) https://doi.org/10.1139/o96-061
  19. J. Rho, J. Kor. Mag. Reson. 18, 82 (2014)
  20. G. Kim and H. Won, J. Kor. Mag. Reson. 18, 74 (2014)