DOI QR코드

DOI QR Code

ALE Finite Element Analysis of the WIG Craft under the Water Impact Loads

ALE 유한 요소법을 적용한 위그선의 착수하중 해석

  • Published : 2007.12.31

Abstract

Demand for high speed sea transportation modes has been increased dramatically last few decades. The WIG(Wing-in-ground effect) is considered as next generation maritime transportation system. In the structural design of high speed marine vessels, an estimation of water impact loads is essential. The dynamic structural responses of the WIG excited by the water impact loads may bring an important contribution to their damage process. The work presented in this paper is focused on the numerical simulation of the water impact on the WIG craft when it lands. It is aimed to study the structural responses of the WIG craft subjected to the water impact loads. The Arbitrary Lagrangian-Eulerian (ALE) finite element method is used to simulate the water impact of the WIG craft during a landing phase. A full 3D shell element is used to model the WIG craft in carbon composites, and a developed FE model is used to investigate the effect of the water impact loads on the structural responses of the WIG craft. In the analysis, two different landing scenarios are considered and their effects on the structural responses are investigated.

고속 및 고효율의 해양 수송수단에 대한 필요성이 점차 증가되면서 위그선(WIG: Wing in Ground effect)이 차세대 수송수단으로 관심이 집중되고 있다. 이러한 고속 해양 수송선의 구조설계 시 수면에 대한 충격하중은 중요하게 고려되어야 할 하중요소 중의 하나이며 착수하중에 의한 동적거동은 손상을 초래하는 중요한 요소이다. 본 연구에서는 위그선 착수 시 수면 충격하중에 대한 수치해석을 통해 선체의 동적거동을 평가하였다. 착수환경에서의 수면충격하중을 ALE (Arbitrary Lagrangian-Eulerian) 유한요소법을 적용하여 해석을 수행하였으며 3차원 쉘요소를 적용한 전기체 모델을 개발하여 위그선의 착수환경에서 선체의 동적거동을 모사하였다. 착수환경은 정상 착수조건과 측풍에 의한 비정상 착수조건 두 가지를 고려하여 해석을 수행하였으며 이러한 착수환경이 위그선 구조의 정적 구조 안정성에 미치는 영향을 평가하였다

Keywords

References

  1. Karman, V., The impact on seaplane floats during landing, N.A.C.A. TN321, Washington, 1929
  2. Wagner, H., Phenomena associated with impacts and sliding on liquid surfaces, NACA library, Langley Aeronautical Laboratory, 1936
  3. Steinus, J., Rosen, A, and Kuttenkeuler, L Explicit FE-modelling of fluid-structure interaction in hull-water impacts, International Shipbuilding Progress, Vol 53, 2006, pp. 103-121
  4. Fasanella, F.L., and Jackson, K.E., Water impact test and simulation of a composite energy absorbing fuselage section, Proceeding of American Helicopter Society 59th Annual Forum, Phoenix, AZ, 2003
  5. Zhang, A, and Suzuki, K., Numerical simulation of fluid-structure interaction of liquid cargo filled tank during ship collision using the ALE finite element method, International Journal of Crash, Vol 11, 2006, pp. 291-298 https://doi.org/10.1533/ijcr.2005.0105
  6. Yettou, E.M., Desrochers, A, and Champoux, Y, Experimental study on the water impact of a symmetrical wedge, Fluid Dynamics Research, Vol 38, 2006, pp. 47-66 https://doi.org/10.1016/j.fluiddyn.2005.09.003
  7. Zhao, R, and Faltinsen, O.M., Water entry of two dimensional bodies, Journal of Fluid Mechanics, Vol 246, 1993, pp. 593-612 https://doi.org/10.1017/S002211209300028X
  8. Olovossion, L., and Souli, M., Multi-material capabilites in LS-DYNA, Proceedings of the 2nd european LS-DYNA users conference, Gothernburg, Sweden, 1999
  9. Okada, S., and Sumi, Y, On the water impact and elastic response of a flat plate at small impact angles, Journal of Mar. Science, Vol 5, 2000, pp. 31-39 https://doi.org/10.1007/s007730070019
  10. Ojeda, R, Prusty, B.G., and Salas, M., Finite element investigation on the static response of a composite catamaran under slamming loads, Ocean Engineering, Vol 31, 2004, pp. 901-929 https://doi.org/10.1016/j.oceaneng.2003.08.008
  11. 최섭, 이종훈, 조기대, 정창래, ADAMS를 이용한 항공기 착률장치 지상 충격하중 및 동적거동 해석, 한국항공우주학회, Vol 30, 2002, pp. 114-122