• Title/Summary/Keyword: FE-simulation

Search Result 732, Processing Time 0.027 seconds

Development of Technique to Improve the Formability of the Rear Floor in Series Stamping Process (연속 스탬핑 작업시 리어 플로어 성형성 향상기술 개발)

  • 김동환;이정민;고영호;차해규;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.25-28
    • /
    • 2004
  • A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.

  • PDF

A study on design optimization of a multistage bollard by Taguchi method (다구찌 방법을 통한 다단식 상하이동형 볼라드의 설계 최적화 연구)

  • Byun, Hong-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.25-31
    • /
    • 2015
  • This study deals with optimal conditions for design parameters of the multistage bollard with up and down installed on the street to protect pedestrians or stop cars. FE simulation and Taguchi method are used to achieve the optimization for the automatic multistage bollard to minimize effective stress caused by the external force. Thickness, height of stage 2, diameter and over-all height which affect its structural strength are chosen as design parameters. According to the experiments combined by orthogonal array, each of the effective stresses is evaluated. And the results are analyzed by using the signal to noise ratio concept of Taguchi method. From their results, the optimal combination of design parameters are proposed.

Experimental and numerical investigation into the damage response of composite sandwich panels to low-velocity impact

  • Feng, Dianshi;Aymerich, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.133-151
    • /
    • 2017
  • The paper describes the results of an experimental and numerical investigation into the structural and damage response of sandwich composites to low-velocity impact. Sandwich panels consisting of laminated composite skins with three different layups bonded to a PVC foam core were subjected to impact at various energy levels corresponding to barely visible impact damage (BVID) in the impacted skins. Damage assessment analyses were performed on the impacted panels to characterise the extent and the nature of the major failure mechanisms occurring in the skins. The data collected during the experimental analyses were finally used to assess the predictive capabilities of an FE tool recently developed by the authors for detailed simulation of impact damage in composite sandwich panels. Good agreement was observed between experimental results and model predictions in terms of structural response to impact, global extent of damage and typical features of individual damage mechanisms.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.791-797
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology for achieving continuous production between the steelmaking and hot rolling processes. However, the vertical horizontal rolling process has many disadvantages, e.g., large width deviations and less efficient width reduction. This study was carried out to investigate the deformation of slab by sizing press with two steps die. To do it, dog-bone and camber are discussed in width sizing process considering the deformation behavior according to the deviation of anvil velocity and the deviation of initial slab temperature. In this paper, the various causes of the sizing press phenomena are mentioned for the purpose of understanding of rolling conditions. As a result, the optimal anvil shape having a minimum-forming load is obtained by FE-simulation and ANN.

IMPROVEMENT OF TOOL LIFE IN COLD FORGING

  • Kim Soo Young;Yamanaka Masahito;Arima Tatsuo;Matsuda Toru
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.175-178
    • /
    • 2003
  • Tool life in cold forging is influenced by tool quality as well as forging conditions and quality of forging material. This paper presents some typical examples of tool life improvement in aspect of tool quality depending on tool design and tool manufacturing parameters. For the purpose of improving tool life, suggestions should be based on accurate understanding of tool operating conditions in cold forging process. FE simulation known as CAE is effective in order to make clear the conditions by some numerically calculated result.

  • PDF

An Analysis of Backward Extrusion Process with Torsion (비틀림을 이용한 후방압출 공정의 해석)

  • 허진혁;김영호;박재훈;진영은;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.846-849
    • /
    • 2000
  • In this paper backward extrusion process with lower die rotation was studied to improve the conventional backward extrusion problems ; requirement of large forming machine, the difficulty to selecting of die material caused by high surface pressure, high cost of forming machine caused by improvement of noise and vibration, and etc. In this experiment, model material, plasticine, was used of specimen. The result values of torsional and conventional backward extrusions were analyzed and compared. FE-simulation is used for analysis with DEFPRM-3D. These results show that the torsional backward extrusion is very useful process because this process can obtain the homogeneous deformation, low forming load. Decreasing forming load improves die life and makes it possible to use press of relatively low capacity. Also this process can reduce corner cavity, improve the initial cast-structure, owing to the high deformation and uniform starin distribution.

  • PDF

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Development of Numerical Analysis Model to Estimate the Contact Force between the Pantograph and Catenary of a High-speed Train (고속 철도 차량용 판토그래프와 가선계의 접촉력 예측을 위한 수치 해석 모델 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Paik, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-467
    • /
    • 2011
  • This study aims to create a numerical analysis model which can investigate the dynamic interaction between pantograph and overhead contact wire used for a high-speed railway vehicle, and validate the simulation results according to EN 50318 standard. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program. The mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the possibility of simulating the collecting characteristic of an actual pantograph system by using the developed model is discussed.

Process Design of Piston-Pin for Automobile by the Flow Control (유동제어를 통한 자동차용 피스톤-펀의 공정설계)

  • 김동진;김병민;이동주
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.151-159
    • /
    • 2001
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In combined cold extrusion of piston-pin, lapping defect, which is a kind of flow defect, appears by the dead metal zone. This appearance evidently happens in products with a thin thickness to be pierced for the dimensional accuracy and the decrease of material loss. The flow defect that occurs in piston-pin has bad effects on the strength and the fatigue life of piston-pin. Therefore, it is important to predict and prevent defects in the early stage of process design. The best method that can prevent flow defect is removing or reducing dead metal zone through material flow control. The finite element simulations are applied to analyze the flow defect. This study proposes processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experimental ones for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF

Process Design to Prevent Flow Defect of Piston-Pin for Automobile (자동차용 피스톤-핀의 유동결함 방지를 위한 공정설계)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.155-158
    • /
    • 2000
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In cold forging of piston-pin Lapping defect a kind of flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The finite element simulations are applied to analyze the flow defect. This study proposed processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experiments for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF