• Title/Summary/Keyword: FE-analyses

Search Result 804, Processing Time 0.026 seconds

Finite Element Analysis on Buckling Pressure by the Lamination of Composite Pressure Bull (복합재 내압선체의 적층에 따른 좌굴하중 변화에 관한 유한요소 해석)

  • Son J. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.;Cho Y. S.;Kim T. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.458-462
    • /
    • 2005
  • This paper deal with the optimal lamination condition of cylindrical shell applied new composite URN300 for a study of composite empirical formula. Finite element analyses for isotropic materials considered element numbers and boundary conditions are compared with existing empirical formulas to apply FE analysis for composite. And composite tensile test is done to know the composite material applied FE analysis for composite. The results of FE analyses for isotropic materials have indicated that Optimal element number and boundary condition were 1600 and both simple support. These conditions were applied in composite FE analyses. Ply orientations and lamination patterns in FE analyses for composite were considered. Ply orientations are $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;and\;90^{\circ}$. Lamination patterns are $[\pm\theta/0/90]_{14s]$ and $[\pm\theta_{14}/0_{14}/90_{14}]_s$ in FE analysis. Lamination pattern $[\pm\theta_{14}/0_{14}/90_{14}]_s$ is the equivalent model of $[\pm\theta/0/90]_{14s}$. At the result of this study, the FE analyses for composite have indicated that the optimized ply orientation $75^{\circ}$ is and real model must use in FE analysis for accurate results.

  • PDF

Plastic loads of pipe bends under combined pressure and out-of-plane bending (면외 굽힘하중과 내압의 복합하중을 받는 곡관의 소성하중)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Park, Chi-Yong;Lee, Sung-Ho;Kim, Tae-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1836-1841
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice-Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed.

  • PDF

FE Lubrication Analyses of High-Speed Gas-Levitation Applications using High-Order Shape Function (고차 형상함수를 이용한 고속 가스부상 FE 윤활해석)

  • 이안성;김준호
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.14-20
    • /
    • 2004
  • In high-speed gas-levitation applications a high compressibility number may bring a numerical difficulty in predicting generated pressure profiles accurately as it causes erroneous sudden pressure overshoot and oscillation in the trailing-edge. To treat the problem, in this study an exact exponential high-order shape function is introduced in the FE lubrication analyses. It is shown by various example applications that the high-order shape function scheme can successfully subdue undesired pressure overshoot and oscillation.

Study on Numerical-analysis Technique for Windpower System Structure under Environmental Loadings (환경하중하의 풍력발전 시스템 구조물의 수치 해석적 기법 연구)

  • Jung, Hae-Young;Hong, Cheol-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.69-75
    • /
    • 2011
  • The purpose of this study was to develop a buckling analysis technique for a windpower system structure under environmental loadings (hydrostatic pressure) using FEM. We analyzed an isotropic material and composite material and made a comparison using buckling pressure formulas. First, finite element analyses for an isotropic material (SC410) were performed to obtain the variation of buckling pressure for the number of elements and boundary conditions in a pressure-shell model, and the numerical results were compared with those of existing empirical formulas. Then, additional finite element analyses based on the results of the isotropic material (SC410) were performed to determine the optimum lamination angle and pattern for a composite material (URN300). The results of the FE analyses for the composite material were also compared with those of existing empirical formulas. The ply orientations (lamination angles) used in the FE analyses were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and. The lamination patterns in the FE analyses were and. The lamination pattern was assumed to be the equivalent model of. The results of the FE analyses for the isotropic material (SC410) indicated that the optimal values for the number of elements and the boundary conditions were 6000 and both simply supported, respectively. The results of the FE analyses for the composite material (URN300) showed that the optimal ply orientation was $60^{\circ}{\sim}75^{\circ}$.

Closed-Form Plastic Collapse Loads of Pipe Bends Under Combined Pressure and In-Plane Bending (압력과 모멘트의 복합하중을 받는 곡관의 소성 붕괴하중 예측식 개발)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1008-1015
    • /
    • 2006
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

A hybrid approach to predict the bearing capacity of a square footing on a sand layer overlying clay

  • Erdal Uncuoglu;Levent Latifoglu;Zulkuf Kaya
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.561-575
    • /
    • 2023
  • This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.

Finite Element Analyses for the Estimates of the Burst Pressures of the Pipes with Defects (결함이 있는 배관의 파열압력 예측을 위한 유한요소 해석기법)

  • Kang, Hye-Min;Oh, Chang-Sik;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.305-310
    • /
    • 2008
  • This paper provides the methods to estimate the burst pressures of the pipes with defects, based on finite element analyses. FE codes are frequently adopted for the simulations of the burst tests of the pipes with defects. However, those do not give the burst pressure directly. Because the post-processing should be followed; determination of the fracture strains in accordance with triaxialities, monitoring the strains of pipes, etc. In the present work, these efforts are implemented in the user subroutine UHARD within the general-purpose FE code, ABAQUS. Four fracture criterions are introduced to estimate the burst pressure of pipes, and a simple fracture strain estimate is also developed. FE analyses for the pipe with gouge and corrosion are performed, and the results are compared with the experiment results.

  • PDF

FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure (유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성)

  • Chang Seung Hwan;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF