• 제목/요약/키워드: FE-BE Coupling Method

검색결과 55건 처리시간 0.027초

망간산화물에 의한 방향족 유기화합물의 산화-공유결합반응 및 이를 이용한 오염토양 정화기법 (Oxidative-Coupling Reaction of Aromatic Compounds by Mn Oxide and Its Application for Contaminated Soil Remediation)

  • 강기훈;신현상;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권5호
    • /
    • pp.115-123
    • /
    • 2007
  • 토양환경내 오염물질의 고정화 현상은 오염물질의 거동을 결정하는 주요 과정중 하나이다. 특히 생물화학적 반응에 대해 비가역적이며, 이로부터 오염물질의 독성도 동시에 제거되는 산화-공유결합반응에 의한 고정화 반응은 오염물질의 주요한 자연정화 메커니즘중 하나일 뿐만 아니라, 이를 공학적으로 응용함으로써 기존의 분해에 의존해 오던 정화 방법에 비해 보다 효과적으로 오염토양 및 지하수의 복원에 적용될 수 있다. 특히 이러한 산화-공유결합반응을 일으키는 촉매로서의 역할을 하는 망간산화물은 미생물 자체, 혹은 미생물을 포함한 균류, 식물체 등으로부터 추출한 산화-환원 효소를 이용하는 것에 비해 실용적인 측면에서 많은 장점을 가지고 있다. 이에 본고에서는 망간산화물을 이용한 유기오염물질의 정화 기작에 대한 최근의 다양한 연구 결과들을 정리하였다. 특히 망간산화물에 대해 반응성을 가지지 않는 안정한 유기오염물의 처리를 위한 관련 연구로서 반응매개체를 적용한 사례와, PAHs 처리기법, $Fe^0$를 이용한 환원 전처리 등 적절한 전처리 기법과의 조합에 의한 처리방법 등에 대한 연구결과를 소개하였으며, 이로부터 보다 광범위한 적용 가능성을 제시하고자 하였다. 자연계 내에서 일어나는 탄소의 순환과정을 고려할 때 산화-공유결합 반응에 의한 고정화 및 안정화 반응은 특히 분해에 대해 높은 내성을 가지는 방향족 유기오염물질의 제거에 보다 효과적으로 적용될 수 있는 친환경적 기법으로 사용될 수 있을 것이다.

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

Effects of Rapid Thermal Annealing on Thermal Stability of FeMn Spin Valve Sensors

  • Park, Seung-Young;Choi, Yeon-Bong;Jo, Soon-Chul
    • Journal of Magnetics
    • /
    • 제10권2호
    • /
    • pp.52-57
    • /
    • 2005
  • In this research, magnetoresistance (MR) ratio (MR), resistivity, and exchange coupling field $(H_{ex})$ behaviors for sputter deposited spin valves with FeMn antiferromagnetic layer have been extensively investigated by rapid thermal annealing (RTA) as well as conventional annealing (CA) method. 10 s of RTA revealed that interdiffusion was not significant up to $325^{\circ}C$ at the interfaces between the layers when the RTA time was short. The MR of FeMn spin valves were reduced when the spin valves were exposed to temperature of $250^{\circ}C$, even for a short time period of 10 s prior to CA. $H_{ex}$ was maintained up to $325^{\circ}C$ of CA when the specimen was subjected to 10 s of RTA at $200^{\circ}C$ prior to CA, which is $25^{\circ}C$ higher than the result obtained from the CA without prior RTA. Therefore, the stability of $H_{ex}$ could be enhanced by a prior RTA before performing CA up to annealing temperature of $325^{\circ}C$. MR and sensitivity of the specimens annealed without magnetic field up to $275^{\circ}C$ were recovered to the values prior to CA, but $H_{ex}$ was not recovered. This means that reduced MR sensitivity and MR during the device fabrication can be recovered by a field RTA.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석 (Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements)

  • 유정수
    • 한국음향학회지
    • /
    • 제33권3호
    • /
    • pp.191-199
    • /
    • 2014
  • 파이프, 평판과 같이 단면의 형상이 길이 방향으로 일정한 도파관 구조물을 따라 전파되는 진동의 반사 및 투과 특성은 여러 공학 분야에서 응용되는 중요한 주제이다. 도파관에 조인트 또는 균열 등의 국부적 불연속이 있는 경우, 스펙트럴 요소(spectral element)와 유한 요소(finite elment)를 결합한 SE/FE 방법이 주로 사용되고 있다. 그러나 이 방법은 보 이론에 기반한 스펙트럴 요소가 사용되므로 저주파수 대역 해석에 국한되는 단점이 있다. 고주파수 대역 해석에는 스펙트럴 수퍼 요소(spectral super element)와 유한 요소를 결합한 SSE/FE 방법이 제안되었으나 유한요소와 스펙트럼 요소의 연성으로 인해 많은 연산 시간이 요구된다. 이러한 문제점을 개선하고자, 본 연구에서는 국부적 불연속 구간의 단면이 일정한 경우에 대해 국부적 불연속 구간을 스펙트럴 수퍼 요소로 대체한 SSE/SSE 연성 해석을 시도하였다. 적용 모델로는 국부적 결함을 가진 레일의 파동 반사 및 투과, 그리고 주기적 보강재를 가진 평판의 진동전파에 대해 적용하였다. 결함을 가진 레일의 해석 예를 통해, 본 논문에서 사용한 SSE/SSE 방법과 기존의 SSE/FE 방법의 성능을 비교하였다. 보강재를 가진 평판의 예를 통해서는 반복 구조를 가진 도파관의 파동 전파 특성 해석에 SSE/SSE 방법이 유용함을 확인하였다.

다층 반무한 지반-구조물계의 입사파 응답해석 (3D Incident Wave Response of Structures on Layered Media)

  • Kim, Moon-Kyum;Cho, Woo-Yeon;Koh, Jae-Pil
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.317-324
    • /
    • 1999
  • Dynamic interaction analysis of surface structure on layered half-space is performed in frequency domain under incident wave excitation. This present study adopts a coupling method that combines the finite element(FE) for the flexible structures and boundary element(BE) for the layered half-space. A semi-analytical approach is employed to reduce the integration range of wavenumbers in the BE formula. For the incident wave input, the response is decomposed and formulated after the impedance matrix for the structure system. Numerical examples are presented to demonstrate the accuracy of the method. The examples show the feasibility of an extended application to the complicated dynamic analysis of structures on layered media under incident wave excitation.

  • PDF

A time domain analysis of train induced vibrations

  • Romero, A.;Galvin, P.;Dominguez, J.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.297-313
    • /
    • 2012
  • This paper is intended to show the robustness and capabilities of a coupled boundary element-finite element technique for the analysis of vibrations generated by high-speed trains under different geometrical, mechanical and operation conditions. The approach has been developed by the authors and some results have already been presented. Nevertheless, a more comprehensive study is presented in this paper to show the relevance and robustness of the method which is able to predict vibrations due to train passage at the vehicle, the track, the free-field and any structure close to the track. Local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line can be represented by the model. Non-linear behaviour of the structures can be also considered. Results concerning the excitation mechanisms, track behaviour and sub-Rayleigh and super-Rayleigh train speed are summarized in this work.