DOI QR코드

DOI QR Code

Effects of Rapid Thermal Annealing on Thermal Stability of FeMn Spin Valve Sensors

  • Published : 2005.06.01

Abstract

In this research, magnetoresistance (MR) ratio (MR), resistivity, and exchange coupling field $(H_{ex})$ behaviors for sputter deposited spin valves with FeMn antiferromagnetic layer have been extensively investigated by rapid thermal annealing (RTA) as well as conventional annealing (CA) method. 10 s of RTA revealed that interdiffusion was not significant up to $325^{\circ}C$ at the interfaces between the layers when the RTA time was short. The MR of FeMn spin valves were reduced when the spin valves were exposed to temperature of $250^{\circ}C$, even for a short time period of 10 s prior to CA. $H_{ex}$ was maintained up to $325^{\circ}C$ of CA when the specimen was subjected to 10 s of RTA at $200^{\circ}C$ prior to CA, which is $25^{\circ}C$ higher than the result obtained from the CA without prior RTA. Therefore, the stability of $H_{ex}$ could be enhanced by a prior RTA before performing CA up to annealing temperature of $325^{\circ}C$. MR and sensitivity of the specimens annealed without magnetic field up to $275^{\circ}C$ were recovered to the values prior to CA, but $H_{ex}$ was not recovered. This means that reduced MR sensitivity and MR during the device fabrication can be recovered by a field RTA.

Keywords

References

  1. J. Y. Hwang, M. Y. Kim, J. R. Rhee, S. S. Lee, D. G. Hwang, S. H. Lee, and S. C. Yu, IEEE Trans. Magn. 38(5), 2764 (2002) https://doi.org/10.1109/TMAG.2002.988900
  2. G. Reiss, H. Bruckl, A. Thomas, M. Justus, D. Meyners, and H. Koop, J. of Magnetics 8(1), 24 (2003)
  3. Y. Hu, C. Kim, T. Stobiecki, C. Kim, and K. Hong, J. of Magnetics 8(1), 33 (2003)
  4. Tsann Lin, Ching Tsang, Robert E, Fontana, and J. Kent Howard, IEEE Trans. Magn. 31(6), 2585 (1995)
  5. Mao-Min Chen, Ching Tsang, and N. Gharsallah, IEEE Trans. Magn. 29(6), 4077 (1993)
  6. Tsann Lin, Daniele Mauri, IEEE Trans. Magn. 35(5), 2607 (1999)
  7. B. K. Kim, J. Y. Lee, S. H. Han, S. K. Lee, and D.G. Hwang, J. Kor. Mag. Soc. 13(2), 53 (2003)
  8. B. K. Kim, J. Y. Lee, S. S. Kim, D. G. Hwang, S. S. Lee, J. Y. Hwang, M. Y. Kim, and J. R. Rhee, J. Kor. Mag. Soc. 13(5), 187 (2003)
  9. G. Pan, S. Huo, D. J. Mapps, and W. Clegg, IEEE Trans. Magn. 35(5), 3916 (1999)
  10. S. W. Kim, J. K. Kim, J. H. Kim, B. K. Kim, J. Y. Lee, S. S. Lee, D. G. Hwang, and J. R. Rhee, J. Appl. Phys. 93(10), 6602 (2003)
  11. A. Wall ash and Y. K. Kim, IEEE Trans. Magn. 34(4), 1519 (1998)
  12. G. W. Anderson, M. Pakala, and Y. Huai, IEEE Trans. Magn. 36(5), 2605 (2000)
  13. K. Shin, W. Lee, Y. Park, K. Lee, and J. Ha, Korea patent, 10-0407907 (2003)
  14. V. S. Sperious, J. P. Nozieres, B. A. Gurney, B. Dieny, T. C. Huang, and H. Lefakis, Phys. Rev. B 47(17), 11579 (1993)
  15. Y. Choi, S. Park, J. Kang, and S. Jo, J. Kor. Mag. Soc. 9(6), 297 (1999)
  16. Y. Wu, G. Han, and T. Chong, J. Appl. Phys. 89(11), 7616 (2001) https://doi.org/10.1063/1.1328057