• Title/Summary/Keyword: FE analysis method

Search Result 1,523, Processing Time 0.032 seconds

Study on the Chemical Characteristics of $PM_{10}$ at Background Area in Korean Peninsula (한반도 서해안 배경지역 미세입자의 화학적 특성 연구)

  • Bang So-Young;Baek Kwang-Wook;Chung Jin-Do;Nam Jae-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.455-468
    • /
    • 2004
  • The purpose of this paper is to understand the time series and origin of a chemical component and to compare the difference during yellow sand episodes for analysis $PM_{10}$ chemical components in the region of west in Korean Peninsula, 1999-2001. An annual mean concentration of $PM_{10}$ is $29.1\;{\mu}g/m^3$. A monthly mean and standard deviation of $PM_{10}$ concentration are very high in spring but there is no remarkably seasonal variation. Also, water soluble ionic component of $PM_{10}$ be influenced by double more total anion than total cation, be included $NO_{3}^-\;and\;SO_{4}^{2-}$ for the source of acidity and $NH_{4}^+$ to neutralize. Tracer metals of $PM_{10}$ slowly increases caused by emitted for soil and ocean (Fe, Al, Ca, Mg, Na) and Zn, Pb, Cu, Mn for anthropogenic source. According to method of enrichment factor (E.F) and statistics, assuming that the origin of metal component in $PM_{10}$ most of element in the Earth's crust e.g. Mg, Ca, Fe originates soil and Cu, Zn, Cd, Pb derives from anthropogenic sources. The ionic component for $Na^{+}\;Cl^-,\;Mg^{2+}\;and\;Ca^{2+}$ and Mg, Al, Ca, Fe originated by soil component largely increase during yellow sand period and then tracer metal component as Pb, Cd, Zn decrease. According to factor analysis, the first group is ionic component ($Na^+,\;Mg^{2+},\;Ca^{2+}$) and metal component (Na, Fe, Mn and Ni) be influenced by soil. The second group, Mg, Cr also be influenced by soil particle.

A Study on Mineral Distribution in Korean Foodstuffs by Neutron Activation Analysis (중성자방사화분석법에 의한 국내 식품원재료의 무기질 분포 연구)

  • Cho, Seung-Yeon;Hong, Woo-Jung;Lee, Jung-Yeon;Kang, Sang-Hoon;Chung, Young-Sam
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.390-395
    • /
    • 2002
  • Concentrations of minerals (Ca, K, Mg, Na, Se, Zn, Fe, and Mn) in 50 different Korean foodstuffs were determined through neutron activation analysis. To check the accuracy of this method, the U.S. NIST standard reference materials were analyzed. Anchovy, sesame, perilla, and laver were found to contain relatively higher concentrations of Ca, Mg, Fe, and Zn than the other foodstuffs.

Structural evaluation of all-GFRP cable-stayed footbridge after 20 years of service life

  • Gorski, Piotr;Stankiewicz, Beata;Tatara, Marcin
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.527-544
    • /
    • 2018
  • The paper presents the study on a change in modal parameters and structural stiffness of cable-stayed Fiberline Bridge made entirely of Glass Fiber Reinforced Polymer (GFRP) composite used for 20 years in the fjord area of Kolding, Denmark. Due to this specific location the bridge structure was subjected to natural aging in harsh environmental conditions. The flexural properties of the pultruded GFRP profiles acquired from the analyzed footbridge in 1997 and 2012 were determined through three-point bending tests. It was found that the Young's modulus increased by approximately 9%. Moreover, the influence of the temperature on the storage and loss modulus of GFRP material acquired from the Fiberline Bridge was studied by the dynamic mechanical analysis. The good thermal stability in potential real temperatures was found. The natural vibration frequencies and mode shapes of the bridge for its original state were evaluated through the application of the Finite Element (FE) method. The initial FE model was created using the real geometrical and material data obtained from both the design data and flexural test results performed in 1997 for the intact composite GFRP material. Full scale experimental investigations of the free-decay response under human jumping for the experimental state were carried out applying accelerometers. Seven natural frequencies, corresponding mode shapes and damping ratios were identified. The numerical and experimental results were compared. Based on the difference in the fundamental natural frequency it was again confirmed that the structural stiffness of the bridge increased by about 9% after 20 years of service life. Data collected from this study were used to validate the assumed FE model. It can be concluded that the updated FE model accurately reproduces the dynamic behavior of the bridge and can be used as a proper baseline model for the long-term monitoring to evaluate the overall structural response under service loads. The obtained results provided a relevant data for the structural health monitoring of all-GFRP bridge.

Diverse Chemo-Dynamical Properties of Nitrogen-Rich Stars Identified from Low-Resolution Spectra

  • Changmin Kim;Young Sun Lee;Timothy C. Beers;Young Kwang Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.59-73
    • /
    • 2023
  • The second generation of stars in the globular clusters (GCs) of the Milky Way (MW) exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 < [Fe/H] < 0.0 from a sample of ~36,800 giant stars observed in the Sloan Digital Sky Survey and Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey, and present their dynamical properties. The N-rich population (NRP) and N-normal population (NNP) among our giant sample do not exhibit similarities in either in their metallicity distribution function (MDF) or dynamical properties. We find that, even though the MDF of the NRP looks similar to that of the MW's GCs in the range of [Fe/H] < -1.0, our analysis of the dynamical properties does not indicate similarities between them in the same metallicity range, implying that the escaped members from existing GCs may account for a small fraction of our N-rich stars, or the orbits of the present GCs have been altered by the dynamical friction of the MW. We also find a significant increase in the fraction of N-rich stars in the halo field in the very metal-poor (VMP; [Fe/H] < -2.0) regime, comprising up to ~20% of the fraction of the N-rich stars below [Fe/H] = -2.5, hinting that partially or fully destroyed VMP GCs may have in some degree contributed to the Galactic halo. A more detailed dynamical analysis of the NRP reveals that our sample of N-rich stars do not share a single common origin. Although a substantial fraction of the N-rich stars seem to originate from the GCs formed in situ, more than 60% of them are not associated with those of typical Galactic populations, but probably have extragalactic origins associated with Gaia Sausage/Enceladus, Sequoia, and Sagittarius dwarf galaxies, as well as with presently unrecognized progenitors.

A Study on the Induction Heating Analysis of Round bar for TR forging (TR단조를 위한 환봉의 유도가열 해석에 관한 연구)

  • Song, M.C.;Park, D.S.;Lee, M.G.;Lee, K.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.194-197
    • /
    • 2009
  • The TR forging is a kind of continuous grain flow forging. The preform of crank shaft for TR forging process was a round bar with a ring groove. In the first stage, the preform was partly heated by induction heating and then forged by vertical and horizontal force in sequence. In this study, the simulation process of induction heating was proposed to evaluate the temperature distribution of preform for TR forging. The equivalent circuit method was adopted to find coil current of the preform with a various dimensions and power levels. With these results, the coupled electromagnetic and transient thermal analysis for induction heating was performed to evaluate the temperature distribution at the preform of crank shaft during induction heating process. This FE analysis technique with equivalent circuit method was verified by comparing the analysis results with the experimental results.

  • PDF

Analysis of Forming Processes of PET Bottle using a finite Element Method (유한요소법을 이용한 PET병의 성형 공정 해석)

  • 주성택;김용환;류민영
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.525-533
    • /
    • 2001
  • PET bottles are main]y manufactured by the stretch blow-molding process. In order to improve the thickness distribution to avoid crack generation at bottom region of one-piece PET bottle, process analysis of stretch blow-molding using a finite element method has been carried out. Finite element analysis has been carried out using ABAQUS/Standard. CREEP user subroutine provided in ABAQUS has been used to model PET behavior that is rate sensitive. Among the process parameters, the effect of plunger movement to thickness distribution of bottle has been considered by axisymmetric analysis. A modified process of plunger movement, which yields more uniform thickness distribution, has been proposed. 3D FE analysis has been done to confirm the validity of the proposed process.

  • PDF

The Permeance Estimation and Characteristic Analysis of the Hybrid Stepping Motors Considering the Saturation (Hybrid Stepping Motor의 포화를 고려한 퍼미언스 산정 및 특성해석)

  • Woo, Joon-Keun;Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Kyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.885-887
    • /
    • 2000
  • The paper proposes the characteristic analysis method to consider the saturation of teeth and poles in the hybrid stepping motors. The proposed method is based on the equivalent magnetic circuit coupling with the finite element analysis. The equivalent magnetic circuit is used to analysis the characteristics of the hybrid stepping motors. And the FE analysis is used to compute the non-linear parameters included the equivalent magnetic circuit in the hybrid stepping motors. Simulation and experiment results show that the proposed technique is compared with the classical method.

  • PDF

Estimation of Effective Coil Length of Superconducting Generator using 3D FEM

  • Shin, Pan-Seok;Park, Doh-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.7-12
    • /
    • 2002
  • This paper presents a method to estimate an effective length of a 1000-kVA superconducting generator using three-dimensional FE analysis. Flux linkage of stator coil and the induced voltage are calculated with FEM program and Faraday's law. An effective length of the stator coil is estimated using the calculated voltage and geometric configurationn of the machine. In order to verify the estimation method, 30-kVA superconducting generator is built and tested. The test result agrees reasonably well with the estimation.

Relationship between Hardness and Relative Ddensity in Sintered Metal Powder Compacts (금속분발소결체의 경도와 상대밀도 관계)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.168-174
    • /
    • 1998
  • In the present study, a method for measuring the relative density by the hardness measurement was proposed for sintered metal powder compacts. It is based on the indentation force equation, by which the relative density is related with the hardness, that was obtained by the finite element analysis of rigid-ball indentation on sintered metal powder compacts. For verifying the method, it was applied to prediction of density distributions in sintered and sintered-and-forged Fe-0.5%C-2%Cu powder compacts.

  • PDF

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Shin, S.J;Lee, T.S;Oh, S.I
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.111-120
    • /
    • 1998
  • This paper is the first one of two-parted research efforts focusing on the modeling of rubber pad forming process. The rubber pad, driven by the pressurized fluid during the forming process, pushes the sheet metal to solid tool half and forms a part to final shape. In this part of the paper, a numerical procedure for the FE analysis of the rubber pad deformation is presented. The developed three-dimensional FE model is based on the total Lagrangian description of rubber maerial characterized by nearly incompressible hyper-elastic behavior under a large deformation assumption. Validity of the model as well as effects of different algorithms corresponding to incompresibility constraints and time integration methods on numerical solution responses are also demonstrated.