• 제목/요약/키워드: FDM Method 3D Printer

검색결과 43건 처리시간 0.026초

TRIZ 기법을 이용한 FDM방식 3D프린터 출력물의 휨 현상 개선에 관한 연구 (A Study on Warpage Reduction of FDM 3D Printer Output Using TRIZ Method)

  • 이송연;허용정;박종순
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.1-5
    • /
    • 2016
  • 3D printer is the equipment of the system for sequentially layer laminated in the materials. Now 3D printer used in various fields such as, semiconductor, electricity automobile, medical and various types of output method and material. In this paper, we studied about the improvement on warpage due to shrinkage of product from 3D printer of FDM(Fused Deposition Modeling) type, we proposed measures systematically to solve warpage problem using of 6SC(6 Step Creativity) method of practical TRIZ. After experimented with product prototypes experiment, we verified effect about solution.

FDM 3D Printer의 층간 충진율에 따른 강도변화 (Strength Variation with Inter-Layer Fill Factor of FDM 3D Printer)

  • 강용구;권현규;신근식
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, FDM-type 3D printer technology has been developed, and efforts have been made to improve the output formability and characteristics further. Through this, 3D printers are used in various fields, and printer technologies are suggested according to usage, such as FDM, SLA, DLP, and SLM. In particular, the FDM method is the most widely used, and the FDM method technology is being developed further. The characteristics of the output are produced by the FDM-type 3D printer, which is determined by various factors, and particularly the perspective of the Inter-Layer Fill Factor, which is the volume ratio of the laminated material that exerts a direct influence. In this study, the Inter-Layer Fill Factor is theoretically obtained by presenting the internal space between each layer according to the laminate thickness as a cross-sectional shape model, and the cross section of the actual laminated sample is compared with the theoretical model through experiments. Then, the equation for the theoretical model is defined, and the strength change according to each condition (tensile strength of material, reduction slope, strength reduction rate, and output strength) is confirmed. In addition, we investigated the influence on the correlation and strength between laminate thickness and the Inter-Layer Fill Factor.

FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링 (Ceramic Direct Rapid Tooling with FDM 3D Printing Technology)

  • 신근식;권현규;강용구;오원택
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

FDM(Fused Deposition Modeling) 방식 3D 프린터를 이용한 불규칙한 표면 출력 (Irregular surface output using FDM (Fused Deposition Modeling) 3D printer)

  • 이정수;차경철
    • 한국결정성장학회지
    • /
    • 제32권1호
    • /
    • pp.33-39
    • /
    • 2022
  • 3D 프린터 관련 특허가 만료되고 주요 기술이 공개되면서 3D 프린터 가격이 하락하면서 원하는 제품을 쉽게 찾을 수 있는 환경이 조성되고 있다. 특히 가장 저렴한 FDM(Fused Deposition Modeling) 3D 프린터가 다양한 분야에서 사용되고 있다. FDM 방식은 형상을 출력할 때 특정 조건이상에서는 지지대(Support)를 붙여야만 형상의 무너짐 없이 제작이 가능하다. 지지대를 달지 않고 형상을 출력할 때 특정 각도에서 발생하는 불규칙한 표면은 제품에 있어서는 불량이지만 예술과 공예적 측면에서는 또 다른 재미를 느낄 수 있는 요소로 활용될 수 있다고 사료된다. 본 논문에서는 이러한 불규칙한 표면을 얻기 위해 출력에 영향을 줄 수 있는 요인들을 제어하고 출력 각도만 변위요소로 실험하였다. 실험 결과 수직에서 62°~70°의 각도로 프린팅 시 필라멘트가 흘러내리지 않고 불규칙한 표면을 얻을 수 있었다. 또한 인위적으로 불규칙한 표면을 공예적인 제품에 적용해 보았다.

DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구 (Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods)

  • 정명휘;공정리;김해지
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.

3D 프린터를 활용한 UHPC 3D 입체패널 제작에 관한 기초적 연구 (A Basic Study on the Manufacture of UHPC 3D stereoscopic panels using 3D Printer)

  • 김태익;윤주용;최병걸;박용규;이대식;윤기원
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.154-155
    • /
    • 2021
  • Appearance finish is important for amorphous buildings to maximize amorphousness, and GFRC, glass, and metal are mostly used as exterior materials for amorphous buildings currently applied. However, the existing exterior materials showed limitations in amorphous expression, texture, and color expression. In this study, a 3D stereoscopic panel mold was manufactured using the FDM method, one of the 3D printing technologies, and 3D stereoscopic panel production was reviewed using Ultra High Performance Concrete (UHPC), which has excellent physical and mechanical performance and expression. In order to overcome the limitations of unstructured expression, a UHPC 3D stereoscopic panel using the FDM method, one of the 3D printing technologies, was manufactured. Unlike steel molds, FRP molds, and EPS molds, the FDM method can be applied to various materials, and complex shapes are implemented. If it is used using recyclable materials as well as PLA filaments used in the FDM method, it will overcome the limitations of amorphous expression and activate the production of 3D stereoscopic panels that have secured eco-friendliness.

  • PDF

ABS 수지로 3D Printing 시 실험변수들의 영향 (The Influence of Experiment Variables on 3D Printing using ABS Resin)

  • 강용구;이태원;신근식
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.94-101
    • /
    • 2017
  • Recently, the small quantity batch production method has come into the spotlight as there are more plastic processing methods. At the same time, the 3D printer market has become globally widespread due to expired 3D printer patents. In particular, the FDM method is widely used for cheap products and materials. However, the FDM scheme is not as good as the injection molding method for quality and strength. This study investigated the effect of the internal filling and strength according to layer thickness to search for the optimum printing of the factors (infill and layer thickness) that determine the strength of the model.

투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법 (An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes)

  • 장승호;홍정모
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작 (Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer)

  • 석익현;박종규
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

FDM 3D Printing 적층조건에 따른 기계적 물성의 연구 (A study of mechanical properties with FDM 3D printing layer conditions)

  • 김범준;이태흥;손일선
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.