• Title/Summary/Keyword: FDM 해석

Search Result 197, Processing Time 0.026 seconds

Combination of Different Numerical Methods for Efficient Thermal Stress Analysis of Casting Process (주조공정에서의 효율적인 열응력 해석을 위한 이종해석기법의 연계)

  • Kwak, Si-Young;Lim, Chae-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1051-1057
    • /
    • 2010
  • This paper proposes a method that involves a combination of FDM and FEM for analyzing casting process. At present, many numerical analysis methods such as FDM, FEM, and BEM are used for solving engineering problems. For a given problem, a specific method that is suited to the problem is adopted; in general, FDM or FVM is favored for problems related to fluid flow or heat transfer, and FEM is adopted in stress analysis. However, there is an increasing need for using a combined method for complex and coupled phenomena analysis. Hence, we proposed a method in which FDM and FEM are coupled in three-dimensional space, and we applied this method to analyze casting process. In the proposed method, solidification and heat transfer was analyzed by using FDM. The field data such as temperature distribution were converted into a format suitable for FEM analysis that was used for calculating thermal stress distribution. Using the proposed method, we efficiently analyzed the analysis process from the viewpoints of work and time.

Strength Prediction Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM) (쾌속조형재료의 강도예측모델 - Fused Deposition Modeling (FDM))

  • 안성훈;이선영;백창일;추원식
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2002
  • Rapid Prototyping(RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling(FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about 300$\mu$m thin filament with designated orientation, parts made from FDM show anisotropic material properties. In this paper an analytic model was proposed to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service(FDMAS) was developed to provide strength prediction and design rules for FDM parts.

Thermal Stress Analysis by Field Data Conversion between FDM and FEM (FDM과 FEM의 해석 데이터 변환에 의한 탄소성 열응력 해석)

  • Kwahk, S.Y.;Cho, C.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.228-234
    • /
    • 2001
  • The present study was an attempt for systematic data conversion between FDM and FEM in order to evaluate the thermal stress distribution during quenching process. It has been generally recognized that FDM is efficient in flow and temperature analysis and FEM in that of stress. But it induced difficulty and tedious work in analysis that one uses both FDM and FEM to take their advantages because of the discrepancy of nodes between analysis tools. So we proposed field data conversion procedure from FDM to FEM in 3-dimensional space, then applied this procedure to analysis of quenching process. The simulation procedure calculates the distributions of temperature and microstructure using FDM and microstructure evolution equations of diffusion and diffusionless transformation. FEM was used for predicting the distributions of thermal stress. The present numerical code includes coupled temperaturephase transformation kinetics and temperature-microstructure dependent material properties. Calculated results were compared with previous experimental data to verify the method, which showed good agreements.

  • PDF

A Study on Deformation Analysis of the Earth Retaining Wall (흙막이벽체의 변형해석에 관한 연구)

  • Lee, Song;Kim, Seong-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.27-36
    • /
    • 2008
  • This paper analyzed the effects related to the difference of the geometrical shape of the ground excavation by comparing the displacements of the earth retaining wall of the strut resulting from the change of the excavation breadth B and the excavation length L, adopting the three dimensional FDM analysis. It appeared that the displacement of the earth retaining wall of the strut increases in accordance with the increase of L/B and it decreases as it becomes nearer from the center to the comer where the temporary structural system forms, and the wale member is closured because of the effects of the confining effect by the closure of the earth retaining wall and the wale member. This paper proposed a formula in which the results of three dimensional FDM analysis which considers the shape of the excavation plane can be obtained from those of two dimentional FDM analysis which does not consider the shape of the excavation plane. And the results of the formula were compared with those of the site instrumentation analysis.

A Comparative Study on Application of FAM and FDM to Small Rectangular Basin Circulation (소규모 사각형 박지순환에 대한 유한해석법과 유한차분법의 비교연구)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1341-1348
    • /
    • 1994
  • This is a comparative study on applications of finite analytic method (FAM) and finite difference method (FDM) to rectangular smalI basin circulation. To do such a comparison, the circulation model in small rectangular basin is established using FAM and the nurmerical solution from the FAM model is compared with that from the FDM model. As the grid size approaches Von Neumann stablity condition, the convergence time to steady state increases in Askren's model, but does not increase in finite analytic model. Especially in the FAM model, the numerical solution converges stably even in the grid size range beyond the stablity condition whereas that diverges in the FDM model. In the case of large basin Reynolds number, it is found that steady state solution is obtained in the FAM model with smaller calculating steps than those of in the FDM model.

  • PDF

Interference of FDM-FM Signal upon PSK Signal (PSK 신호에 대한 FDM-FM 신호의 섭간영향)

  • 이형재;이대령;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 1981
  • The effect of wideband FDM-FM signal on binary CPSK signal in an interchannel interference environment has been investigated. A general equation of the bir error rate of binary CPSK signal with cochannel and adjacent channel interference from FDM-FM signal has been derived. The numerical results are given in graphs as the functions of carrier to noise ratio (CNR), carrier to interference ratio(CIR) and normalized carrier separation between PSK and FM signals. The results obtained can be used om desogmomg tje freqiemcy allocation, bandwidths and powers of PSK and FM signals in same radio frequency (RF) bands.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Simulation of Elastic Wave Propagation in Anisotropic Materials (이방성 재료에서의 탄성파 전파 과정에 대한 시뮬레이션)

  • Kim, Young-H.;Lee, Seung-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.227-236
    • /
    • 1997
  • Quantitative analysis and imaging of elastic wave propagation are very important for the materials evaluation as well as flaw detection. The elastic wave propagation in an anisotropic media is more complex, and analysis and imaging become essential for flaw detection and materials evaluation. In the anisotropic media, the wave velocity is dependent on the propagation direction. In addition, the direction of group velocity is different from that of phase velocity, the direction of energy flow is not same as the propagation direction of wavefront (beam skewing effect). Especially, this effect becomes critical for the large anisotropic media such as fiber composite materials, and the results using elastic waves for those materials have to be analyzed considering the wave propagation mechanism. Since the analytical approach for the wave propagation in the anisotropic materials is limited, the numerical analysis such as finite difference method (FDM) have been used for these case. Therefore, 2-dimensional FDM program for the elastic wave propagation is developed, and wave propagation in anisotropic media are simulated.

  • PDF

A Study on Predicting Progress Carbonation using FDM Analysis After Carbonated RC Structures Surface Repair (탄산화가 진행된 기존 RC구조물의 표면보수공법 적용 후 FDM 해석을 이용한 탄산화 진행 예측 연구)

  • Lee, Hyung-Min;Lee, Han-Seung;Kim, Yeung-Kwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.13-14
    • /
    • 2015
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. in other words, of the hydrates in the cement pastes, the one which reacts with readily is Ca(OH)2, the product of the reaction being CaCO3 and which decreases the alkalinity of concrete. Consequently, RC structure is deteriorated due to steel corrosion in concrete. As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

A Comparative Study on Finite Difference Method and Finite Analytic Method to One-Dimensional Convective-Diffusion Equation (1차원 이류·확산 방정식에 대한 유한차분법과 유한해석법의 비교연구)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.129-138
    • /
    • 1993
  • In this study, the applicability of finite analytic method (FAM) is studied by selecting linearized-Burgers equation and Burgers equation which have convective and diffusive behaviors as the model equation of Navier-Stokes equations and by comparing numerical solution of finite difference method (FDM) and finite analytic method. The results are as follows. It is shown that the convergence of FAM for steady-state analytic solution of linearized-Burgers equation and Burgers equation is better than that of FDM under the same criteria. Also the accuracy of FAM for transient solution of Burgers equation is excellent. Especially, it is shown that oscillation phenomenon due to dispersion errors which occur according to the choice of grid size in FDM does not occur in FAM at all. So, it can be thought that FAM is numerically very stable scheme, which is free from dispersion errors.

  • PDF