• 제목/요약/키워드: FCW(Forward Collision)

검색결과 11건 처리시간 0.027초

레이더/카메라 센서융합을 이용한 전방차량 충돌경보 시스템 (Forward Collision Warning System based on Radar driven Fusion with Camera)

  • 문승욱;문일기;신광근
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.5-10
    • /
    • 2013
  • This paper describes a Forward Collision Warning (FCW) system based on the radar driven fusion with camera. The objective of FCW system is to provide an appropriate alert with satisfying the evaluation scenarios of US-NCAP and a driver acceptance. For this purpose, this paper proposed a data fusion algorithm and a collision warning algorithm. The data fusion algorithm generates information of fusion target depending on the confidence of camera sensor. The collision warning algorithm calculates indexes and determines an appropriate alert-timing by using analysis results of manual driving data. The FCW system with the proposed data fusion and collision warning algorithm was investigated via scenarios of US-NCAP and a real-road driving. It is shown that the proposed FCW system can improve the accuracy of an alarm-timing and reduce the false alarm in real roads.

승용차 전방충돌보호 시스템 검사기준 마련 연구 (A Study on the Preparation of Inspection Standard for Front Collision Protection System for Vehicles)

  • 박지양;권영문;최수광;이호상;김용달;여운석;정재환;김진용
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.24-29
    • /
    • 2021
  • In order to prevent automobile accidents internationally, advanced safety devices are actively being developed. Among them, Auto Emergency Brake (AEB) function and Forward Collision Warning (FCW), which are used to prevent or reduce frontal collision, have been studied for a long time, and are being researched by various manufacturers to develop better performance. In fact, in the case of large vehicles, it is mandatory for AEB to be installed in Korea. Accordingly, a variety of Vehicles equipped with AEB and FCW are coming out, and inspection of these mounting devices is a necessary system in the future. This study confirms how AEB and FCW are currently assessed in regulation and the New Car Assesment Program (NCAP), This is a basic study of the matters to be considered in preparing AEB and FCW inspection standard by checking the performance of vehicles equipped with forward collision protection and identifying the vehicle's sensitivity, range and speed of radar sensors, and target vehicles based on CAN communication data.

첨단경고장치가 사업용 차량 운전자의 운전행태에 미치는 영향 분석 (Identifying the effects of advanced warning devices on the driving behaviors of commercial vehicle drivers)

  • 박재영;김도경
    • 한국도로학회논문집
    • /
    • 제20권1호
    • /
    • pp.137-146
    • /
    • 2018
  • PURPOSES : This study aims to analyze how the installation of advanced warning devices affects individual drivers' driving behaviors with operating record data collected from 100 vehicles. METHODS : With collected data, the changes in individual drivers' driving behaviors, such as Forward Collision Warning (FCW) and Lane Departure Warning (LDW), were investigated with respect to the cumulative distance traveled and driving time. For the analysis, operating record data collected from 100 vehicles for seven months were used. RESULTS : The results showed that individual drivers' driving behaviors could be categorized into six different types. In addition, most of the drivers showed unstable warning patterns in the initial stage after installation of an advanced warning device. Approximately 40% of vehicles equipped with advanced warning systems were found to have positive effects, indicating that the frequencies of both FCW and LDW had been continuously decreasing after installation of the system. CONCLUSIONS : The warning device might be helpful for making drivers' driving behaviors safer. Driving behaviors during the initial stage of the system installation, which might be regarded as an adaptation phase, were found to be very unstable compared with normal situations, indicating that adequate education and training should be provided to all the drivers to prevent operator disruption at the initial installation of the system.

전방충돌경보(FCW)의 교통안전 증진효과 추정 (Estimation of Traffic Safety Improvement Effect of Forward Collision Warning (FCW))

  • 김형규;이수범;이혜린;홍수정;민혜령
    • 한국ITS학회 논문지
    • /
    • 제20권2호
    • /
    • pp.43-57
    • /
    • 2021
  • 자율주행의 핵심기술인 첨단 운전자 지원 시스템(Advanced Driver Assistance Systems) 중 대표기술인 전방충돌경보(Forward Collision Warning)를 대상기술로 선정하여, 주행시뮬레이션 실험 기반의 교통사고 예방효과를 추정하였다. 효과척도로 ①인지반응시간(s) ②감속도(m/s2) ③충돌여부(회)로 선정하여, 전방충돌경보 미설치시와 설치시의 변화량 측정하였다. 실험 시나리오는 운전자 전방의 차량의 급정거하는 시나리오(1)과 옆차로에서 차량이 끼어드는 시나리오(2)를 진행하였으며, 주간/야간으로 구분하였다. 분석결과, 전방충돌경보장치를 설치하였을 경우, 인지반응시간(s)이 감소하였으며, 감속도(m/s2)는 감소하였다. 운전자의 위험상황을 빠르게 감지하여 여유로운 감속을 할 수 있게 되었으며, 그에 따른 전방충돌횟수도 감소한 것으로 분석되었다. 향후 운전자의 운전성향을 반영하고 실험 시나리오를 다양화하면, ADAS의 설치효과를 증대시키고 다른 기술의 효과추정에도 활용될 수 있을 것이다.

종방향 능동안전장치의 평가기준 연구 (Study for Evaluation Standard of Longitudinal Active Safety System)

  • 장현익;용부중;조성우;최인성;민경찬;김규현
    • 자동차안전학회지
    • /
    • 제4권1호
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

Vehicles Auto Collision Detection & Avoidance Protocol

  • Almutairi, Mubarak;Muneer, Kashif;Ur Rehman, Aqeel
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.107-112
    • /
    • 2022
  • The automotive industry is motivated to provide more and more amenities to its customers. The industry is taking advantage of artificial intelligence by increasing different sensors and gadgets in vehicles machoism is forward collision warning, at the same time road accidents are also increasing which is another concern to address. So there is an urgent need to provide an A.I based system to avoid such incidents which can be address by using artificial intelligence and global positioning system. Automotive/smart vehicles protection has become a major study of research for customers, government and also automotive industry engineers In this study a two layered novel hypothetical approach is proposed which include in-time vehicle/obstacle detection with auto warning mechanism for collision detection & avoidance and later in a case of an accident manifestation GPS & video camera based alerts system and interrupt generation to nearby ambulance or rescue-services units for in-time driver rescue.

전방차량 인식을 위한 차량 추적 방법 (Vehicle Tracking for Forward Vehicle Detection)

  • 정성환;권동진;송혁;박상현;이철동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.486-487
    • /
    • 2012
  • 본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.

전방 추돌 경보를 위한 영상 기반 실시간 차량 검출 및 추적 알고리즘 (Vision-based Real-time Vehicle Detection and Tracking Algorithm for Forward Collision Warning)

  • 홍성훈;박대진
    • 한국정보통신학회논문지
    • /
    • 제25권7호
    • /
    • pp.962-970
    • /
    • 2021
  • 대부분의 자동차 사고는 졸음운전과 같은 운전자의 부주의로 인해 발생한다. 전방 추돌 경보 시스템 (FCWS)은 전방 차량으로부터 추돌 위험을 감지하여 운전자에게 사전에 경고함으로써 사고의 위험을 현저하게 줄여준다. 본 논문은 주행 안전을 위한 저전력 임베디드 기반 FCWS를 소개한다. 단일 카메라로부터 전방 차량에 대해 검출, 추적, 거리를 계산하고 현재 차량의 속도 정보를 통해 충돌시간 (TTC)을 계산한다. 또한 저성능 임베디드 시스템에서 실시간으로 동작하기 위해 높고 낮은 수준의 프로그램 최적화 기법을 소개한다. 이 시스템은 임베디드 시스템에서 사전에 취득해둔 주행 영상을 통해서 테스트 하였다. 최적화 기법을 사용한 결과는 이전에 최적화를 하지 않은 프로세스 보다 실행 시간이 약 170배 향상되었다.

첨단안전장치 장착 버스의 사고사례 분석 (Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS))

  • 박종진;최영수;박정만
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

다기능 전방 카메라 개발을 위한 영상 DB 구축 방법에 관한 연구 (A Study on the Image DB Construction for the Multi-function Front Looking Camera System Development)

  • 기석철
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.219-226
    • /
    • 2017
  • This paper addresses the effective and quantitative image DB construction for the development of front looking camera systems. The automotive industry has expanded the capability of front camera solutions that will help ADAS(Advanced Driver Assistance System) applications targeting Euro NCAP function requirements. These safety functions include AEB(Autonomous Emergency Braking), TSR(Traffic Signal Recognition), LDW(Lane Departure Warning) and FCW(Forward Collision Warning). In order to guarantee real road safety performance, the driving image DB logged under various real road conditions should be used to train core object classifiers and verify the function performance of the camera system. However, the driving image DB would entail an invalid and time consuming task without proper guidelines. The standard working procedures and design factors required for each step to build an effective image DB for reliable automotive front looking camera systems are proposed.