• Title/Summary/Keyword: FCM 클러스터링

Search Result 135, Processing Time 0.041 seconds

An Improved Clustering Method with Cluster Density Independence (클러스터 밀도에 무관한 향상된 클러스터링 기법)

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.248-249
    • /
    • 2015
  • Clustering is one of the most important unsupervised learning methods that clusters data into homogeneous groups. However, cluster centers tend leaning to high density clusters because clustering is based on the distances between data points and cluster centers. In this paper, a modified clustering method forcing cluster centers to be apart by introducing a center-scattering term in the Fuzzy C-Means objective function is introduced. The proposed method converges more to real centers with small number of iterations compared to the original one. All the strengths can be verified with experimental results.

  • PDF

Enhanced FCM Based Hybrid Network for Effective Pattern Classification (효과적인 패턴분류를 위한 개선된 FCM 기반 하이브리드 네트워크)

  • Kim, Tae-Hyung;Cha, Eui-Young;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.35-40
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

  • PDF

A Watershed-based Texture Segmentation Method Using Marker Clustering (마커 클러스터링을 이용한 유역변환 기반의 질감 분할 기법)

  • Hwang, Jin-Ho;Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.441-449
    • /
    • 2007
  • In clustering for image segmentation, large amount of computation and typical segmentation errors have been important problems. In the paper, we suggest a new method for minimizing these problems. Markers in marker-controlled watershed transform represent segmented areas because they are starting-points of extending areas. Thus, clustering restricted by marker pixels can reduce computational complexity. In our proposed method, the markers are selected by Gabor texture energy, and cluster information of them are generated by FCM (fuzzy c-mean) clustering. Generated areas from watershed transform are merged by using cluster information of markers. In the test of Brodatz' texture images, we improved typical partition-errors obviously and obtained less computational complexity compared with previous FCM clustering algorithms. Overall, it also took regular computational time.

  • PDF

A Kernel based Possibilistic C-Means Clustering Algorithm (커널 기반의 Possibilistic C-Means 클러스터링 알고리즘)

  • 최길수;최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.158-161
    • /
    • 2004
  • Fuzzy Kernel C-Means(FKCM) 알고리즘은 커널 함수를 통하여 구형의 데이터뿐만 아니라 Fuzzy C-Means(FCM)에서는 분류하기 힘든 복잡한 형태의 분포를 갖는 데이터를 분류할 수 있다. 하지만 FCM과 같이 노이즈에 대해서는 민감한 성질을 가진다 이처럼 노이즈(noise)에 민감한 성질을 보완하기 위해서 본 논문에서는 Possibllistic C-Means 알고리즘에 커널 함수를 적용하였다. 본 논문에서 제안된 Kernel Possibilistic C-Means(KPCM) 알고리즘은 일반적인 데이터에 대해 FKCM과 같은 성능의 클러스터링 수행이 가능하며 노이즈가 있는 데이터에 대해서는 FKCM보다 더욱 정확한 클러스터링을 수행할 수 있다.

  • PDF

Faults Current Discrimination Using FCM (FCM을 이용한 고장전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Ji, Suk-Joon;Lee, Joon-Tark;Kim, Kwang-Back
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.458-460
    • /
    • 2007
  • RBF 네트워크의 중간층은 클러스터링 하는 층으로 주어진 자료 집합을 유사한 클러스터들로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링 하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 이용하고자 하였다. 그리하여 본 논문에서는 고장 전류의 특성을 해석하여 그 원인을 판단, 분류하기 위하여 전력계통의 고장 기록 장치로부터 얻어지는 선로의 전류 데이터를 FCM을 이용 분류하여 다양한 고장 모드를 판별할 수 있었다.

  • PDF

Enhanced FCM-based Hybrid Network for Pattern Classification (패턴 분류를 위한 개선된 FCM 기반 하이브리드 네트워크)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1905-1912
    • /
    • 2009
  • Clustering results based on the FCM algorithm sometimes produces undesirable clustering result through data distribution in the clustered space because data is classified by comparison with membership degree which is calculated by the Euclidean distance between input vectors and clusters. Symmetrical measurement of clusters and fuzzy theory are applied to the classification to tackle this problem. The enhanced FCM algorithm has a low impact with the variation of changing distance about each cluster, middle of cluster and cluster formation. Improved hybrid network of applying FCM algorithm is proposed to classify patterns effectively. The proposed enhanced FCM algorithm is applied to the learning structure between input and middle layers, and normalized delta learning rule is applied in learning stage between middle and output layers in the hybrid network. The proposed algorithms compared with FCM-based RBF network using Max_Min neural network, FMC-based RBF network and HCM-based RBF network to evaluate learning and recognition performances in the two-dimensional coordinated data.

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.

Diagnosis of Pet by Using FCM Clustering

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2021
  • In this paper, we propose a method of disease diagnosis system that can diagnose the health status of household pets for the people who lack veterinary knowledge. The proposed diagnosis system holds 50 different kinds of diseases with the symptoms for each of them as a database to provide results from symptom input. Each disease database has its own symptom codes for a disease, and by using the disease database, FCM clustering technique is applied to disease which outputs membership degree to determine diseases close to the input symptom as a pet diagnosis result. The implementation results of the proposed pet diagnosis system were obtained by the number of selected symptoms and the possibility values of the diseases that have the selected symptoms being sorted in descending order to derive top 3 diseases closest to the pet's symptom.

Video Segmentation Using a $color-x^2$ intensity histogram-based FCM Clustering (컬러-$x^2$ 명도 히스토그램기반 FCM 클러스터링을 이용한 비디오 분할)

  • Lee, Ji-Hyun;Kang, Oh-Hyung;Na, Do-Won;Rhee, Yang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.189-192
    • /
    • 2005
  • 비디오 분할의 목적은 같은 내용들을 가지는 프레임들의 순서를 표현하는 각 샷의 비디오 순서 분할을 위한 것이다. 그리고 색인에 대한 각 샷으로부터 키 프레임을 선택한다. 존재하는 비디오 분할 방법들은 2가지 그룹들로 분류될 수 있다. 먼저 경계값이 할당되어야만 하는 샷 전환 검출(SCD) 접근과 클러스터 수의 사전 지식이 요구되는 클러스터 접근이다. 본 논문에서는 컬러-$x^2$명도 히스토그램 기반 FCM(fuzzy c-means) 클러스터링 알고리즘을 사용하는 비디오 분할 방법을 제안하였다. 이 알고리즘은 앞에서 기술한 2가지 접근의 혼합이다. 그리고 이것은 두 가지 접근들의 결점을 극복하도록 설계 되었다. 실험 결과들은 컬러-$x^2$명도 히스토그램 기반 FCM 클러스링 알고리즘이 강건하고 비디오 시퀀스들의 다양한 형태들에 응용할 수 있다고 제안한다.

  • PDF

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF