• 제목/요약/키워드: FCM의 문제점

검색결과 30건 처리시간 0.023초

Fuzzy c-means의 문제점 및 해결 방안 (Problems in Fuzzy c-means and Its Possible Solutions)

  • 허경용;서진석;이임건
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.39-46
    • /
    • 2011
  • 클러스터링은 주어진 데이터 집합을 균일한 특성을 가지는 몇 개의 그룹으로 묶는 대표적인 비교사 학습 방법 중 하나로 지금까지 다양한 형태의 알고리듬이 개발되어 다양한 응용 분야에서 사용되어 왔다. 이 중 fuzzy c-means (FCM)는 분할 기반의 클러스터링 기법에 속하는 알고리듬으로 1970년대에 정립된 이후 지금까지 사용되고 있는 대표적인 클러스터링 알고리듬 중의 하나이다. 하지만 FCM에는 여러 가지 문제점이 있으며 이를 해결하기 위해 지금까지도 다양한 FCM의 변형이 제안되고 있다. 이 논문에서는 먼저 FCM의 문제점을 살펴보고 이를 해결하기 위해 제안된 방법들을 통해 연구 방향을 제시하고자 한다. FCM의 문제점을 해결하고자 하는 대부분의 FCM 변형은 주어진 문제 영역의 지식을 활용하고 있다. 하지만 이 논문에서는 문제 영역을 한정하지 않고 모든 문제에 적용할 수 있는 일반적인 방안을 제시하는데 초점을 둔다. 제시하는 방안은 앞으로 더 많은 연구가 필요하지만 클러스터링을 연구하고자 하는 이들에게 최근의 연구 동향과 더불어 출발점을 제시할 수 있을 것으로 기대한다.

커널을 이용한 전역 클러스터링의 비선형화 (A Non-linear Variant of Global Clustering Using Kernel Methods)

  • 허경용;김성훈;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means(FCM)는 퍼지 집합을 응용한 간단하지만 효율적인 클러스터링 방법 중 하나이다. FCM은 여러 응용 분야에서 성공적으로 활용되어 왔지만, 초기화와 잡음에 민감하고 볼록한 형태의 클러스터들만 다룰 수 있는 문제점이 있다. 이 논문에서는 이러한 FCM의 문제점을 해결하기 위해 전역 클러스터링(global clustering) 기법과 커널 클러스터링(kernel clustering) 기법을 결합하여 새로운 비선형 클러스터링 기법인 커널 전역 FCM(kernel global fuzzy c-means, KG-FCM)을 제안한다. 전역 클러스터링은 클러스터링의 초기화를 위한 방법 중 하나로, 순차적으로 클러스터를 하나씩 추가함으로써 초기화에 민감한 FCM의 한계를 극복할 수 있도록 해준다. FCM의 잡음 민감성과 볼록한 클러스터들만 다룰 수 있는 한계를 극복하기 위한 방법은 여러 가지가 있으며 커널 클러스터링이 그 중 하나이다. 커널 클러스터링은 사용하는 커널을 바꿈으로써 쉽게 확장이 가능하므로 이 논문에서는 커널 클러스터링을 사용하였다. 두 방법을 결합함으로써 제안한 방법은 위에서 언급한 문제점들을 해결할 수 있으며, 이는 가상 및 실제 데이터를 이용한 실험 결과를 통해 확인할 수 있다.

타당성 척도를 내재한 머조리티 보팅 FCM (Majority-Voting FCM with Implied Validity Measure)

  • 이강화;이동일;이석규
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.543-548
    • /
    • 2002
  • 퍼지 클러스트링은 전통적인 FCM을 이용하여 수행될 수 있다 그러나 FCM을 사용하는데 있어서 고려해야 할 문제점은 크게 두가지이다. 첫째는 FCM은 초기 멤버쉽 함수의 지정에 민감하고, 둘째는 FCM 알고리듬의 수행에는 클러스터의 개수를 미리 지정 해 주어야 한다는 것이다. 따라서 FCM과 동시에 수행하여야 할 과제는 클러스터의 개수를 찾기 위하여 타당성 척도를 이용한 시뮬레이션을 수행하여야 한다. 본 논문에서는 위의 두 가지 문제점을 동시에 해결 할 수 있는 FCM 알고리듬을 제시하고, 그 적용성을 시뮬레이션을 통하여 검증한다. 본 논문의 기여도는 MV-FCM 알고리듬의 제시와 이 알고리듬의 타당성 척도로써의 효율성이다.

내부클러스터를 이용한 개선된 FCM 알고리즘에 대한 연구 (A Study on the Modified FCM Algorithm using Intracluster)

  • 안강식;조석제
    • 정보처리학회논문지B
    • /
    • 제9B권2호
    • /
    • pp.202-214
    • /
    • 2002
  • 본 논문에서는 FCM알고리즘과 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결하기 위하여 개선된 FCM 알고리즘을 제안한다. 개선된 FCM 알고리즘은 내부클러스터를 이용하여 클러스터 크기가 다른 경우에도 크기가 작은 클러스터에 일정한 소속정도를 부여할 수 있다. 그리고 이에 맞는 목적함수를 설계하고 검증한 후 데이터 분류에 사용하기 때문에 목적함수의 수렴성 문제를 극복할 수 있다. 그러므로 클러스터 크기가 다른 경우에 발생하는 FCM 알고리즘의 문제점과 목적함수의 수렴성에 문제가 있는 평균내부거리를 적용한 퍼지 클러스터링 알고리즘의 문제점을 해결할 수 있다. 제안한 알고리즘을 검증하기 위하여 제안한 알고리즘을 이용하여 데이터를 분류한 결과를 FCM 알고리즘, 평균 내부거리를 적용한 퍼지 클러스터링 알고리즘을 이용하여 데이터를 분류한 결과와 각각 비교하였다. 실험을 통하여 제안한 알고리즘으로 데이터를 분류할 경우 분류 엔트로피에 의해 기존의 알고리즘들보다 더 좋은 결과를 나타냄을 알 수 있었다.

내부클러스터를 이용한 개선된 FCM 알고리즘에 관한 연구 (A Study on the Modified FCM Algorithm using Intracluster)

  • 안강식;이동욱;조석제
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.755-758
    • /
    • 2001
  • 본 논문에서는 서로 다른 크기의 클러스터에 대해서 효과적으로 데이터를 분류할 수 있는 내부클러스터를 이용한 개선된 FCM 알고리즘을 제안하였다. 내부클러스터는 평균내부거리 안쪽에 속하는 데이터 집합으로 클러스터의 크기와 밀도에 비례한다. 그러므로 이를 이용한 개선된 FCM 알고리즘은 기존의 FCM 알고리즘이 클러스터 크기가 다를 경우 퍼지분할과 중심탐색을 제대로 하지 못하는 문제점을 개선한 수 있다. 실험을 통하여 개선된 FCM 알고리즘이 분류 엔트로피에 의해 기존의 FCM 알고리즘 보다 더 좋은 결과를 나타냄을 알 수 있었다.

  • PDF

효과적인 패턴분류를 위한 개선된 FCM 기반 하이브리드 네트워크 (Enhanced FCM Based Hybrid Network for Effective Pattern Classification)

  • 김태형;차의영;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.35-40
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

  • PDF

FCM을 이용한 지식기반 데이터베이스 검색 시스템의 구축 (Building of Database Retrieval System Based on Knowledge using FCM)

  • 박계각;서기열;천대일;양원재
    • 한국지능시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.88-93
    • /
    • 2001
  • 기존의 데이터베이스 검색시스템은 사용자의 검색 조건에 정확히 일치하는 데이터가 데이터베이스 내에 존재할 경우에만 사용자에게 해당 데이터를 제공할 수 있고, 사용자의 검색조건을 정확히 만족하는 데이터가 없을 경우에는 적절한 데이터를 제공할 수 없는 문제점이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 FCM의 클러스터증가 및 재초기화 알고리즘을 제안하였고, FCM을 이용하여 데이터베이스 내의 데이터로부터 구축된 지식기반 데이터베이스(KDB)와 구축된 이미지 데이터베이스와 연동을 통하여 사용자의 요구에 가장 근접한 데이터를 제시해 주는 검색시스템을 제안하였다. 본 연구에서 제안된 수법을 우체국의 우편주문안내책자를 이용한 선물고르기 DB 검색 시스템에 적용하여 그 유효성을 확인하였다.

  • PDF

패턴 분류를 위한 개선된 FCM 기반 하이브리드 네트워크 (Enhanced FCM-based Hybrid Network for Pattern Classification)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제13권9호
    • /
    • pp.1905-1912
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습 구조는 일반화된 델타 학습법을 적용한다. 제안된 방법의 인식 성능을 평가하기 위해 2차원 좌표 평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

커널 밀도 추정을 이용한 Fuzzy C-means의 초기 원형 설정 (Initial Prototype Selection in Fuzzy C-Means Using Kernel Density Estimation)

  • 조현학;허경용;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.85-88
    • /
    • 2011
  • Fuzzy C-Means (FCM) 알고리듬은 가장 널리 사용되는 군집화 알고리듬 중 하나로 다양한 응용 분야에서 사용되고 있다. 하지만 FCM은 여러 가지 문제점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 클러스터링 결과가 달라진다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 개선하기 위하여 커널밀도 추정 (kernel density estimation) 기법을 활용하는 방법을 제안한다. 제안한 방법에서는 먼저 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 설정할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험결과를 통해 확인할 수 있다.

  • PDF

FCM 알고리즘을 이용한 개선된 퍼지 이진화 방법 (Enhanced Fuzzy Binary Method using FCM Algorithm)

  • 박하실;송두헌;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.145-147
    • /
    • 2014
  • 대부분 이진화 알고리즘은 임계치를 결정하기 위해 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명암 차이가 큰 경우는 분할을 위해 양봉 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것으로도 양호한 임계치를 찾을 수 있지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 이 문제점을 개선하기 위해 삼각형 타입의 소속 함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화 하는 퍼지 이진화 방법이 제안되었다. 퍼지 이진화 방법은 소속 함수에 적용된 소속도를 a-cut에 적용하여 영상을 이진화 한다. 그러나 기존의 퍼지 이진화 방법은 a-cut값을 경험적으로 설정하기 때문에 다양한 영상을 이진화하는 과정에서 정보 손실이 많이 발생하는 문제점이 있다. 따라서 본 논문에서는 FCM 클러스터링 알고리즘을 이용하여 퍼지 이진화 방법의 a-cut값을 동적으로 설정하여 이진화하는 방법을 제안한다. 제안된 방법을 다양한 영상에 적용한 결과, 배경과 물체의 명암도 차이가 크게 나지 않는 영상의 경우에는 기존의 퍼지 이진화 방법보다 정보 손실이 적은 상태로 이진화되는 것을 확인하였다.

  • PDF