• Title/Summary/Keyword: FBW, Fly-By-Wire

Search Result 18, Processing Time 0.029 seconds

A Development and Verification Process of Auto Generated Code for Fly-By-Wire Helicopter Control Law (Fly-By-Wire 헬리콥터 비행제어법칙 자동생성코드 개발 및 검증 프로세스)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Heo, Jin-Goo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.488-494
    • /
    • 2013
  • The control law design and analysis environment of the FBW helicopter system have been developed using model base design method. The model based design is generally used in a aircraft, unmanned aerial system and automobile as well as rotorcraft development. The model based design provides many advantages such as development risk and schedule reduction using simulation and autocode generation. This paper describes a development of process for verification and validation of auto generated code for FBW helicopter flight control law. And this process is applied for Fly-By-Wire Helicopter Development Project. The results of functional test for auto generated code meet several specific requirements.

Design and Validation of Model Inversion Flight Control Law for Fly By Wire Helicopter (FBW 헬리콥터 모델 역변환 비행제어법칙 설계 및 검증)

  • Kim, Chong-Sup;Cho, In-Je;Lee, Seung-Duck;Lee, Han-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.678-687
    • /
    • 2012
  • The Fly-By-Wire(FBW) flight control system is essential to improve the stability and flying quality of the helicopter. Advanced aerospace companies, such as Bell-Sikorsky (USA) and NHI (European Consortium), have already applied the FBW flight control system to manufacture V-22 and NH-90 helicopters, respectively. This paper addresses the development of control law design using model inversion method improve the hover and low speed handling qualities of helicopter based on BO-105 model in 'Day' and 'Degraded visual environments(DVEs)' in accordance with ADS-33E-PRF. Design parameters are optimized to satisfy the handling qualities specification using Control Designer's Unified Interface (CONDUIT) commercial control law software. The result of the analysis based on CONDUIT and non-real time simulation in-house software, HETLAS (HElicopter Trim Linearization And Simulation) reveals that the provides an efficient mean to achieve Level 1 handling qualities.

FBW System and Operational Flight Program Development for Small Aircraft (소형항공기를 위한 FBW 시스템과 비행운영 프로그램 개발)

  • Lee, Seung-Hyun;Kim, Eung Tai;Seong, Kiejeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To have the competitiveness in the future worldwide small aircraft market, we should be able to develop the aircraft which is highly safe, easy to fly, and having excellent flight characteristics. FBW(Fly-By Wire) system is essential for the enhancement of flight safety and control easiness. FBW system that has been applied only to the modern fighter and transport aircraft is recently applied to smaller aircraft such as regional aircraft, business aircraft and even small aircraft. The purpose of this research includes the development of flight control computer, the definition of FBW system component, the design concept of each component for redundant management, OFP(Operational Flight Program) development, FBW system integration and HILS(Hardware In-the Loop Simulation) verification environment to test this FBW system.

Civil Aircraft Digital Fly-By-Wire System Technology Development Trend (민간항공기 디지털 Fly-By-Wire 시스템 기술 개발 동향)

  • Kim, Eung-Tai;Chang, Jae-Won;Choi, Hyoung-Sik;Lee, Sug-Chon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 2009
  • The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type. In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed.

  • PDF

A Survey on Fly-By-Wireless Flight Control Technology (Fly-By-Wireless 비행제어 기술의 연구 동향)

  • Han, Jung-Soo;Ha, Chul-Su;O, Su-Hun;Kang, Seung-Eun;Ko, Sangho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • This paper deals with recent research cases and directions of Fly-By-Wireless (FBWLS) flight control technology. FBWLS is a new type of flight control system technology with the aim of solving the problems mainly caused by the increasing amount of wires in aircraft to which Fly-By-Wire (FBW) technology applies. Therefore, in FBWLS flight control system the wired communication system is replaced with a wireless communication system. Currently the FBWLS flight control technology is at an initial development stage and thus this paper surveys deals with the cases in the viewpoint of technology feasibility. In this context, this paper analyzes technology that needs further studies to secure the reliability, stability and accuracy to the similar level of the corresponding FBW system. Since the major problems of FBWLS technology are packet losses and time delays so that this paper suggests the research direction of wireless communication protocol selection, optimization of wireless communication network and controller design considered communication environment.

Design of Flight Envelope Protection System on Velocity of Aircraft (항공기의 수평속도에 대한 비행영역 보호 시스템 설계)

  • Shin, Ho-Hyun;Lee, Sang-Hyun;Kim, You-Dan;Kim, Eung-Tae;Seong, Ki-Jung;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • Recently developed aircrafts use Fly-By-Wire(FBW) or Fly-By-Light(FBL) system. These systems have some merits; they can perform very complicated missions, they can expand the flight region and improve the reliability of the aircrafts. With the development of flight control systems that use FBW technique, flight envelope protection concept is introduced to guarantee reliability of the aircraft and improve the efficiency of mission achievement. In this study, flight envelope protection system is designed using a dynamic trim algorithm, a peak response estimation, and a gain scheduling technique. The performance of these methods are compared by performing numerical simulation.

Design of a Flight Envelope Protection System Using a Dynamic Trim Algorithm

  • Shin, Ho-Hyun;Lee, Sang-Hyun;Kim, You-Dan;Kim, Eung-Tae;Sung, Ki-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.241-251
    • /
    • 2011
  • Most large commercial aircrafts and high performance military aircrafts use fly-by-wire (FBW) or fly-by-light systems to improve their controllability, comfort, and safety. A flight envelope protection technique is used with flight control systems utilizing the FBW technique. Such flight envelope protection systems prevent these aircraft from exceeding the structural/aerodynamic limits and control their surface limits. This is accomplished by predicting the values of the future state variables and adaptively compensating the control action. In this study, the conventional dynamic trim algorithm of the flight envelope protection is modified to increase the method accuracy and to handle cases with multiple variables. Numerical simulation is also performed to verify the performance of the proposed method.

Development of Autothrottle for Small Aircraft FBW Test (소형항공기 FBW 시스템용 오토스로틀 개발)

  • Lee, Sugchon;Kim, Eung Tai;Seong, Kie-Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.3
    • /
    • pp.32-38
    • /
    • 2009
  • An autothrottle module for small jet aircraft Fly-By-Wire system was developed. The autothrottle was designed to be composed of DC geared motor and electro-magnetic clutch that enables smooth manual/auto switching. A controller was designed for simple position control using ON/OFF control method with a commercial motor driver. The autothrottle developed was installed in the cockpit mockup and interfaced to the flight control computer for the HILS test. The performance test proved that the throttle lever follows well the command signal from the flight control computer.

  • PDF

In Flight Simulation for Flight Control Law Evaluation of Fly-by-Wire Aircraft (I)

  • Ko, Joon-Soo;Lee, Ho-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2560-2565
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The control law was designed for the most unstable aircraft configuration flight regime for the target aircraft (FBWA). The ground based simulation including math-model, real-time pilot-in-the-loop and iron bird simulation were used for validation of the control law before the experimental in-flight simulation on the IFS (In.Flight-Simulator) aircraft. The flight tests results showed that Level 1 handling qualities for the most unstable flight regime were achieved.

  • PDF

Secure methodology of the Autocode integrity for the Helicopter Fly-By-Wire Control Law using formal verification tool (정형검증 도구를 활용한 Fly-By-Wire 헬리콥터 비행제어법칙 자동코드 무결성 확보 방안)

  • An, Seong-Jun;Cho, In-Je;Kang, Hye-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.398-405
    • /
    • 2014
  • Recently the embedded software has been widely applied to the safety-critical systems in aviation and defense industries, therefore, the higher level of reliability, availability and fault tolerance has become a key factor for its implementation into the systems. The integrity of the software can be verified using the static analysis tools. And recent developed static analysis tool can evaluate code integrity through the mathematical analysis method. In this paper we detect the autocode error and violation of coding rules using the formal verification tool, Polyspace(R). And the fundamental errors on the flight control law model have been detected and corrected using the formal verification results. As a result of verification process, FBW helicopter control law autocode can ensure code integrity.